Geometry Unit 1 Review

Day 1.
Distinguish between Euclidean and non-Euclidean Geometry.
For each of the following, determine whether they demonstrate a Euclidean or a non-Euclidean Geometry.

Explain how you are able to distinguish between Euclidean and non-Euclidean Geometry.
\qquad
\qquad
\qquad

Day 2.
Identify how many dimensions an object has.
Give an example of an object with...
0 dimensions: \qquad
1 dimension: \qquad
2 dimensions: \qquad
3 dimensions: \qquad
Just by looking at an object, how can you tell how many dimensions it has?

Day 3.
Identify vocabulary words on a diagram using appropriate notation.
Use the following diagram to find examples of each of the following. Be sure to use appropriate notation.

Three collinear points:
You should have three capital letters separated by commas.
Three non-collinear points:
You should have three \qquad letters separated by \qquad .

A line:
You should have \qquad capital letters separated by \qquad with a \qquad on top.

A line using a different notation:
You should have one \qquad letter in cursive.

A plane:
You should have \qquad capital letters separated by \qquad with nothing on top.

A plane using a different notation: \qquad
You should have one \qquad letter in \qquad .

Four coplanar points: \qquad
You should have four \qquad letters separated by \qquad with \qquad on top.

A ray:
You should have \qquad capital letters separated by \qquad with \qquad on top.

A segment:
You should have \qquad capital letters separated by \qquad with \qquad on top.

Day 4.
Find the slopes of lines and write an equation given points and a graph.
Find the slopes of each of the lines below. Then, write their equation.

$(3,2)$ and $(4,-1)$
$(-2,5)$ and $(-8,0)$
$(1,5)$ and $(1,-7)$

Day 6.
Use the Segment Addition Postulate to solve for lengths of segments.
Find $A B$ and $C D$:

If $A C=48$, solve for x. Then, solve for $A B$ and $B C$.

Solve for x.

Find the distance between two points on a coordinate plane.
Find the distance between each of the following points.

$(3,2)$ and $(4,-1)$
$(-2,5)$ and $(-8,0)$
$(1,5)$ and $(1,-7)$

Day 7.
Use both the Segment Addition Postulate and the Bisector Theorem to solve for lengths of a segment.

In the diagram below, solve for x.

In the diagram below, solve for x.

