Slopes of Secant and Tangent Lines

Slopes of Secant and Tangent Lines

- Determine slopes and write equations of secant lines for given functions.
- Make basic observations about tangent lines on graphs.
- Language Objectives:
- Distinguish between secant lines and tangent lines.

Secant and Tangent Lines

-What are secant and tangent lines?

Equations we will use

- $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
- $m=\frac{f(x+\Delta x)-f(x)}{\Delta x}$ or $m=\frac{f(x+h)-f(x)}{h}$
- $y=m\left(x-x_{1}\right)+y_{1}$ or $y=m x+b$

Sketching Lines

- Sketch $y=(x+3)^{2}$
- Sketch the secant line that connects the points $x=-1$ and $x=-3$

Sketching Lines

- Sketch $y=(x+3)^{2}$
- Sketch the secant line that connects the points $x=-1$ and $x=-3$

Sketching Lines

- Sketch $y=(x+3)^{2}$
- Find the slope of the secant line that connects the points $x=-1$ and $x=-3$

Equations of Tangent Lines

- To find the slope of a tangent line...
- $y=m\left(x-x_{1}\right)+y_{1}$
- It doesn't matter which point you pick, as long as x_{1} and y_{1} correspond.
- To get m, use the equation: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Sketching Lines

- Sketch $y=(x+3)^{2}$
- Write the equation of the secant line that connects the points $x=-1$ and $x=-3$

Tangent Lines

-What is a tangent line?

- How does it differ from a secant line?

Sketching Lines

- Sketch $y=(x+3)^{2}$
- Sketch the tangent lines that contain the points $x=-1, x=$ -3 , and $x=-4$

