limits of piecewise functions

piecewise-defined functions

- FIND HIE ONE-SIDED LIMITS OF A PIECEwISE-DEFINED FUNCHION.
- DIStINGUIST BE twEEN the EQUAHION FOTMS, HTE LIMITS. AND tHE HYPES OF DISCONHINUIIY.
- LaNGUAGE OBUECIIVES:
 AND IIS FUNCHION.
tupes of discontinuities
- wTIAA AIE HIE +YPES OF EQuations?
- MOLE (EEMOVABE DISCONiNuIIF)
- vertical asympoote
- ulmp disconinulity

example 1

- Evaluate $\lim _{x \rightarrow 2} f(x)$ AND $f(2)$ IF

$$
f(x)= \begin{cases}\sqrt{3+5}, & x<2 \\ \sqrt{2 x-4}, & x \geq 2\end{cases}
$$

example 2

- Evaluate $\lim _{x \rightarrow 0} f(x)$ AND $f(0)$ IF

$$
f(x)= \begin{cases}-|x|, & x<0 \\ |x|, & x>0\end{cases}
$$

example 3

- Evaluate $\lim _{x \rightarrow 0} f(x)$ If $f(x)=\left\{\begin{array}{cc}2 x+5, & x<0 \\ 4 x-1, & x=0 \\ -5 x, & x>0\end{array}\right.$

practice problems

2.5.4 Practice Problems

1. Evaluate $\lim _{x \rightarrow-2} f(x)$ if $f(x)= \begin{cases}3 x-5 x^{2}, & x<-2 \\ 13 x, & x>-2\end{cases}$
2. Evaluate $\lim _{x \rightarrow 3} f(x)$ and $f(3)$ if $f(x)= \begin{cases}\sin \left(\frac{\pi x}{3}\right), & x<3 \\ 4, & x=3 \\ \cos \left(\frac{\pi x}{3}\right)+1, & x>3\end{cases}$
3. Evaluate $\lim _{x \rightarrow 7} f(x)$ and $f(7)$ if $f(x)=\left\{\begin{array}{cc}x, & x>7 \\ x-7, & x \leq 7\end{array}\right.$
4. Evaluate $\lim _{x \rightarrow-1^{-}} f(x)$ and $\lim _{x \rightarrow-1^{+}} f(x)$ if $f(x)= \begin{cases}\sqrt{x+5}, & x>-1 \\ x+3, & x<-1\end{cases}$
5. Evaluate $\lim _{x \rightarrow 4} f(x)$ and $f(4)$ if $f(x)= \begin{cases}e^{3 x-1}, & x \leq 4 \\ x^{2}+5, & x>4\end{cases}$
6. Evaluate $\lim _{x \rightarrow 0^{-}} f(x)$ and $\lim _{x \rightarrow 0^{+}} f(x)$ if $f(x)= \begin{cases}\frac{4 x}{3-x}, & x=0 \\ x^{2}-2, & x>0 \\ \ln (x+1), & x<0\end{cases}$
7. defined, exists Evaluate $\lim _{x \rightarrow 0^{-}} f(x)$ and $\lim _{x \rightarrow 0^{+}} f(x)$ if $f(x)= \begin{cases}\frac{\cos x}{x}, & x \geq 6 \\ 4 x^{2}-1, & x<6\end{cases}$
8. defined, doesn't exist, Evaluate $\lim _{x \rightarrow 9} f(x)$ and $f(9)$ if $f(x)= \begin{cases}|2 x-1|, & x>9 \\ \cos \frac{\pi \pi}{7}, & x=9 \\ \sqrt{3 x-1,}, & x<9\end{cases}$
