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1. Techniques of Integration

Up until now, we have only learned about taking the derivative of a function. Given the position
function, we can find velocity. Given the velocity function, we can find acceleration. We now
need to learn to go backwards.

First Semester

Position
⇓

Velocity
⇓

Acceleration

Second Semester

Acceleration
⇓

Velocity
⇓

Position

Integrating is not quite as straight-forward as differentiating. There are, in fact, many
functions which can’t be integrated using basic calculus. Many a mathematician has spent his
or her career finding new ways to integrate, or maybe even just working on integrating a single
function. In this class, you’ll learn a couple of techniques for integrating, but this is just the tip
of the iceberg. As you continue taking Calculus classes, you’ll continue to learn about more and
more advanced techniques for taking integrals, and even still, there will always be an integral
out there somewhere that you just can’t do. Integration is a completely different beast than
differentiation.

1.1 Introduction to Integrals
We’ll begin in the same place we began with derivatives – the Power Rule. This is one of the
few rules that easily converts from derivatives directly to integrals and is fairly easy to pick
up.

Objectives — Introduction to Integrals.

• Use the Power Rule to find antiderivatives of functions.



8 Chapter 1. Techniques of Integration

The best way to learn how to do integration is to just start! But let’s get do some vocabulary first.

Vocabulary — Antiderivative.
"Antiderivative" is the technically correct term to use instead of "integral." In calculus, there are
two kinds of integrals – the indefinite integral (also called the antiderivative) and the definite
integral. We will learn about definite integrals later; in the next few lessons we will focus on
antiderivatives. Mathematically, they are closely related, however, the answer to an antiderivative
is always an equation, whereas the answer to a definite integral is always a number.

Most people don’t bother with (or aren’t aware of) the distinction and simply use the term
integral; however it is important to note that there is actually a difference.

Vocabulary —
∫

.
This is not technically a word, but this symbol is what we use to signify that we are taking the
integral of something. It is the same idea as using d

dx when we’re talking about derivatives. When
using

∫
, we always have a dx at the end of the function. For example:

∫
(5x+2)dx. This is

because we must specify which variable we’re taking the integral with respect to (just like when
we were working with derivatives). After we perform the integration, we no longer need or
include the dx (you can imagine it falling off).

1.1.1 Using the Power Rule
Since it’s been a while since we’ve done Calculus, let’s have a refresher problem first.

Find d
dx

(
6x4−2x+15

)
.

If you remember the Power Rule from last semester, you should remember that you will multiply
the exponent by the corresponding coefficient and then subtract one from the exponent. When
we do this, we get: 24x3−2

With this in mind, let’s now look at an example of antidifferentiation.

Example 1.1 Find
∫ (

2x9−4x4 +2x−1
)

dx �

This problem is asking us: what could you take the derivative of to get that expression? You
can try to guess and check. For example: Could the answer be 19x10 +2x−4? Well, hopefully
it’s obvious that this is not the answer. When we take the derivative of that, we would get
190x9 +2 which is just right out.

Perhaps you can see that we could use 2
10 x10− 4

5 x5 + x2− x. Taking the derivative, the denomi-
nator of 2

10 would cancel out with the 10 when you multiply and then the 10 would become a 9
and so on. Going through each of the terms, we see it does indeed work.

But wait! What about... 2
10 x10− 4

5 x5 + x2− x+152? Wouldn’t that also differentiate to give us
the original question? Or how about 2

10 x10− 4
5 x5 + x2− x−4982.84? The fact is that because

the constant will always disappear when you take the derivative, technically, the integral could
have any constant at the end of it. They’ll all work. We’ll talk about that more later.

So now, we arrive at a question: must we always guess and check? Or is there an easier way to
do this? And of course, the answer is the latter.

∼Mackay∼



1.1 Introduction to Integrals 9

Theorem 1.1.1 — Antidifferentiation Involving the Power Rule. When taking a derivative,
we always multiply and then subtract. Since we are now doing the inverse, when we integrate,
we will add and then divide. (Note that the operations changed and their order changed.)

Derivatives
Multiply Subtract

Anti-Derivatives
Add Divide

Let’s try another example now that we know this trick.

Example 1.2 Find
∫ (

4x3−2x7 +3x
)

dx �

We’ll use our algorithm from Theorem 1.1.1. We add one to the exponent and then divide by
that number for each term. This gives us a possible answer of: 4

4 x4− 2
8 x8+ 3

2 x2+672821.975493.
Remember, we could end with any constant we want because it will just fall off when we go to
take the derivative anyway. Of course, you can certainly simplify this answer which would give
us x4− 1

4 x8 + 3
2 x2 +672821.975493.

Let’s formalize this idea of the constant. Because the constant at the end could literally be
anything, we want an answer that encompasses all of those possibilities. So we use the letter
C (always capitalized) to represent this and we call it the "constant of integration." Our final
answer for example 5.2 would be: x4− 1

4 x8 + 3
2 x2 +C. From now on, any time you’re doing an

anti-derivative, you MUST include the +C. Leaving it off will cause the problem to be wrong!

Sometimes, we’ll have to simplify before we can use this rule. For example,

Example 1.3 Find
∫

x2
(
x+3x5

)
dx �

Before we can use the Power Rule, we need to distribute. That would give us:
∫ (

x3 +3x6 +2
)

dx

Now, we can use our trick, add then divide, which gives us our answer: 1
4 x4 + 3

7 x7 +2x+C.

Example 1.4 Find
∫

x4−4x3+x2+5
x2 dx �

Just like in the last example, we can’t use the Power Rule the way this is set up right now. We
need to rearrange things a little. So, we’re going to split this fraction into four different fractions

like this:
∫ (

x4

x2 − 4x3

x2 + x2

x2 +
5
x2

)
dx

Surely, we can clean this up a little bit. We can reduce each fraction by x2 (since that’s in the
denominator), so we would get:

∫ (
x2−4x+1+ 5

x2

)
dx.

Taking it a step further leaves us at:
∫ (

x2−4x+1+5x−2
)

dx.

We can now integrate which gives us the grand answer of: 1
3 x3−2x2−5x−1 +C.

Example 1.5 Find
∫ (√

x+ 1
x3

)
dx �

There is quite a bit going on here, but never fear. Recall when we were doing derivatives, we
always started by rewriting everything so we didn’t have fractions or radicals anymore. Let’s use

∼Mackay∼



10 Chapter 1. Techniques of Integration

that same policy here:
∫ (

x
1
2 + x−3

)
dx.

Now, we can follow the same policy we were using earlier... add and then divide by the new

exponent. We get an answer of x
3
2

3
2
− 1

2 x−2 +C.

Wow! That looks awful! (No, everything in math is beautiful.) Isn’t there a better way to set
this up? Of course. Remember, when you’re dividing by a fraction, it’s the same as multiplying
by the reciprocal. So, ÷3

2 is the same thing as ×2
3 . Knowing that, we can get a much cleaner

answer: 2
3 x

3
2 − 1

2 x−2 +C.

Example 1.6 Find
∫ (3

4
√

x+ 1
5 x−4

)
dx �

Let’s start by getting rid of that radical. We would have:
∫ (

3
4 x

1
2 + 1

5 x−4
)

dx. Now we can
apply our same rule of adding and dividing. Remember, though, when you divide a fraction, it’s
the same thing as multiplying by the reciprocal. We have: 2

3 ·
3
4 x

3
2 + 1

−3 ·
1
5 x−3 +C.

Cleaning this up a little gives us: 1
2 x

3
2 − 1

15 x−3 +C.

1.1.2 Practice Problems

1. Find
∫

14dx

2. Find
∫

π dx

3. Find
∫ (

4x5−2x2 +5x3−3x+1
)

dx

4. Find
∫ (4

5 y7 +2y−3−4y
)

dy

5. Find
∫ (

x3π + x2π −4x
)

dx

6. Find
∫ (√

x− 4
x3 +2x

)
dx

7. Find
∫ (

2√
x −

4
x5 +5x−2

)
dx

8. Find
∫

xe dx

9. Find
∫
(u+3)(2u−1)du

10. Find
∫ (

2x3−4x2+3
x7

)
dx

11. Find
∫ (

(2x3−4)(4x+5)
x6

)
dx

12. Find
∫ (

3
2 p

1
3 +2p

1
2 −14

)
dp

13. Find
∫ (

x3−x2+4x−1√
x

)
dx

14. Find
∫

dx

1.1.3 Practice Problems Solutions

1. 14x+C

2. πx+C

3. 2
3 x6− 2

3 x3 + 5
4 x4− 3

2 x2 + x+C

4. 1
10 y8− y−2−2y2 +C

5. x3π+1

3π+1 +
x2π+1

2π+1 −2x2 +C

6. 2
3 x

3
2 +2x−2 + x2 +C

7. 4x
1
2 + x−4 + 5

2 x2−2x+C

8. xe+1

e+1 +C

9. 2
3 u3 + 5

2 u2−3u+C

10. −2
3 x−3 + x−4− 1

2 x−6 +C

11. −8x−1−5x−2 +4x−4 +4x−5 +C

12. 9
8 p

4
3 + 4

3 p
3
2 −14p+C

13. 2
7 x

7
2 − 2

5 x
5
2 + 8

3 x
3
2 −2x

1
2 +C

14. x+C

∼Mackay∼



1.1 Introduction to Integrals 11

AP On the AP test, remember that they aren’t terribly interested in your ability to do arithmetic
and basic algebra. While those are important, they’re testing your ability to do calculus.
Many of the problems in this book are more complex arithmetically and algebraically than
what you can expect to see in May.

1.1.4 A Word About the Constant of Integration

Let’s take a stroll through our brains to the part where you stored information from last semester.
Go specifically to the part where we studied function analysis and the graphs that went with that.
Let’s take the graph below as an example.

The graph shown is the derivative of some function f ′ and we wish to use it to graph the
original function f . We note certain characteristics, for example, the x−intercepts would become
critical values on the original function. The parts of the derivative above the x−axis would
become increasing intervals on the original function and the parts of the derivative below the
x−axis would translate to decreasing parts of the original function. We can even see that the
minimum on this graph of the derivative would be the point of inflection for the original function.
When it’s all said and done, we could sketch something like:

But, recall that when doing function analysis, we discussed that there is more than one
possible answer for these graphs. In fact, there are an infinite number of answers. We can
translate that same graph up and down as much as we want and it would still be a perfectly valid
answer. Here are some other possibilities:

∼Mackay∼



12 Chapter 1. Techniques of Integration

So, how does this relate to the Constant of Integration? Let’s look at the equations for all the
functions in that last diagram. I happen to know them since I’m the one who graphed them:
f (x) = 3x3 +5x2− x+3
f (x) = 3x3 +5x2− x+2
f (x) = 3x3 +5x2− x+1
f (x) = 3x3 +5x2− x
f (x) = 3x3 +5x2− x−1

f (x) = 3x3 +5x2− x−2
f (x) = 3x3 +5x2− x−3
f (x) = 3x3 +5x2− x−4

Notice that the part of each of these equations that is changing is the y−intercept. And notice
also that when we talk about the Constant of Integration, it is actually the y−intercept.

The first graph above was the derivative. We wanted to get the original equation. When
we go from the derivative to the original equation, we are integrating. When you integrate,
you end up with a Constant of Integration which can be any constant. Since the Constant of
Integration also happens to be the y−intercept when we substitute in different variables, we
end up with a graph that moves up and down along the y−axis. This should provide a satis-
factory explanation for why we had so many possible answers when we worked with these graphs.

There is much more for us to learn about the constant of integration. On page 65, we will
see why, depending on the type of integral, the constant is not always necessary. This will be
explained in much greater depth when we reach the geometric explanation on page ??. There are
even some conditions where we would be able to solve for the constant given enough information
about the scenario. We’ll see more on that on page 46.

1.1.5 Homework: Introduction to Integrals
Problem 1.1 Find

∫
4dx.

Problem 1.2 Find
∫

2xdx.

Problem 1.3 Find
∫

edx.

Problem 1.4 Find
∫ (

3m2−2m+6m3−4
)

dm.

Problem 1.5 Find
∫ (

1
2 x

3
2 +4x

7
3

)
dx.

Problem 1.6 Find
∫

xeπ dx.

Problem 1.7 Find
∫
(4y+2)2 dy.

Problem 1.8 Find
∫ (

2x+4x2

3√x

)
dx.

∼Mackay∼



1.2 Integrating Transcendental Functions 13

Problem 1.9 Find
∫ (

4x3+2x2−1
x5

)
dx.

Problem 1.10 Find
∫

xdy.

1.2 Integrating Transcendental Functions
Now that we have a good general understanding of how antidifferentiation works, we’re going to
look specifically at the transcendental functions we learned about before. Specifically, we’ll be
looking at ex, lnx, and the trigonometric functions.

Objectives — Integration of Transcendental Functions.

• Use the derivatives of ex and lnx and derivatives of the trigonometric functions to find
antiderivatives of functions.

1.2.1 Working with ex and lnx

Let’s once again refresh our memory on the derivatives. Recall that d
dx ex = ex and d

dx lnx = 1
x .

Going backwards, we can conclude:

Theorem 1.2.1 — Antiderivatives of ex and lnx.
∫

1
x dx = ln |x|+C and

∫
ex dx = ex +C

Note that an absolute value symbol appeared next to the natural log. This is because log
functions only work for positive numbers. Therefore, when we find the anti-derivative of a
function and get a log, we must make sure only positive numbers are being used.

Let’s dive right in and give a problem a try.

Example 1.7 Find
∫ ( 1

3x +3ex
)

dx �

To make this a little easier to see, we can rewrite things: 1
3

∫
1
x dx+3

∫
ex dx

Look closely and be sure you see where everything went. Now, using the information from
Theorem 5.1.2, we can find our integral: 1

3 ln |x|+3ex +C. This is still an indefinite integral, so
we still need the constant of integration just as we did before.

Example 1.8 Find
∫

4
x dx �

Again, we should split this up to get: 4
∫

1
x dx =4ln |x|+C.

Example 1.9 Find
∫

3e8x dx �

This is set up a little differently because of that extra 8 in the exponent. There’s also a 3 out
front, but we can rewrite that part no worries: 3

∫
e8x dx. So now, about this 8...

Let’s think about this backwards. We know that the answer to this problem will be something we
can differentiate to get e8x. Recall that when you’re working with the derivatives of e, the junk in
the exponent always stays the same. So our anti-derivative should follow the same requirement.
My answer will have an e8x in it somewhere.
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14 Chapter 1. Techniques of Integration

Let’s try a sort of guess and check process with just this one requirement. Perhaps my answer
is: 3

(
e8x
)
+C If I check this by differentiating, I would get... 3

(
8e8x

)
= 24e8x. We can see this

doesn’t quite work. We shouldn’t have a 24 in front like that.

What if we consider using a 1
8 to evade this issue? Perhaps our answer could be: 3

(1
8 e8x

)
+

C =3
8 e8x +C.

Now, we can check that we do indeed have the correct answer. Taking the derivative, of our
answer, we get: 3

8 ·8e8x = 3e8x and our answer checks out.

Example 1.10 Find
∫ (3

5 e6x− 1
2x

)
dx �

Let’s begin by rewriting this in an easier form: 3
5

∫
e6x dx− 1

2

∫
1
x dx.

We can use the same approach to the first term as we did in the Example 1.9. The second
term should be pretty obviously the natural log. We get as our answer: 3

5 ·
1
6 e6x− 1

2 ln |x|+
C= 1

10 e6x− 1
2 ln |x|+C.

Example 1.11 Find
∫
(4x−10)ex2−5x+2 dx �

This one looks pretty tricky, but it’s easier than it looks. Let’s consider a similar approach to
what we used in Example 1.9.

We know the junk in the exponent has to stay the same, that’s part of what makes e special.
So, let’s try an answer of: ex2−5x+2+C. If we take the derivative of that, we get: (2x−5)ex2−5x+2.

We actually almost have the answer! We only need to double the 2x−5 and we have the right
derivative. That means we can use: 2ex2−5x+2 +C as our final answer.

1.2.2 Working with the Trigonometric Functions
Once again, we have to reach back and remember our derivatives from last semester.
d
dx sinx = cosx
d
dx cosx =−sinx
d
dx tanx = sec2 x

d
dx cscx =−cscxcotx
d
dx secx = secx tanx
d
dx cotx = csc2 x

Using these, we can easily go backwards and figure out our antiderivatives.

Theorem 1.2.2 — Antiderivatives of Trigonometric Functions.∫
cosxdx = sinx+C∫
sinxdx =−cosx+C∫
sec2 xdx = tanx+C

∫
cscxcotxdx =−cscx+C∫
secx tanxdx = secx+C∫
csc2 xdx =−cotx+C

Let’s try out some examples.

Example 1.12 Find
∫
−7cosxdx �

Let’s begin by rewriting this: −7
∫

cosxdx.
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1.2 Integrating Transcendental Functions 15

So now, all we really need t do is figure out what I can take the derivative of to get cosx and of
course, that would be sinx. So, my answer is: −7sinx+C.

???

One of the biggest problems students have with integrating trigonometric functions is
remembering which ones change signs. The greatest advice would be to write down all six of the
trigonometric derivatives before beginning the test so you can simply glance at them later on if
you need them.

There’s another well-known trick for sinx and cosx that we can use. Begin by writing sinx.
Draw a down arrow and write the derivative of sinx, then draw a down arrow and write the
derivative of that, etc. Keep going until you get back to the sinx you started with. You should get
something like this:

sinx
⇓

cosx
⇓

−sinx
⇓

−cosx
⇓

sinx

To integrate, find where you are on the chart and then go up. For example,
∫
−sinxdx= cosx+C.

Let’s look at some harder examples.

Example 1.13 Find
∫

cosx
sin2 x

dx �

We’ll need to simplify this first so we can better see what’s happening. We can rewrite it as:∫
cosx
sinx

1
sinx dx =

∫
cotxcscxdx =−cscx+C.

So, how would you have known to break up the fraction like that if I hadn’t just shown you
in this example? One tip would be to find a way to make it look like one of the four expressions:

sec2 x csc2 x secx tanx cscxcotx (1.1)

If you can get it there, you’re home free. If you can’t, then it’s probably going to be an
anti-derivative that’s beyond the scope of this class (so you shouldn’t see anything that won’t
work with this tip within this class).

In case you’re a little rusty on your trigonometry, these are the most important identities to
be familiar with (from Pre Calculus):

tanx = sinx
cosx cotx = cosx

sinx cscx = 1
sinx

(
csc2 x = 1

sin2 x

)
secx = 1

cosx

(
sec2 x = 1

cos2 x

)
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16 Chapter 1. Techniques of Integration

Example 1.14 Find
∫ (√

x− 3
sin2 x

)
dx �

Rewrite this as necessary so you can see what we have:
∫

x
1
2 dx−3

∫
csc2 xdx.

We can integrate the first term using the inverse of the Power Rule from the last section. That
will get us to the point: 2

3 x
3
2 −3

∫
csc2 xdx.

Now, to handle the last part, note that I intentionally forced it to look like one of the expressions
from Equation 1.1.

Thinking back to our derivatives, we know that d
dx cotx =−csc2 x. This tells us that

∫
csc2 xdx =

−cotx+C.

That means our final answer must be: 2
3 x

3
2 +3cotx+C.

Example 1.15 Find
∫ (

sin2
θ + cos2 θ

)
dθ �

This is a hard question, because we don’t know any derivatives or integrals that have just
a sin2 x or cos2 x. Integrating them would be a complicated process indeed and would involve
methods of integration that we can’t even imagine.

If we think for a moment, though, we recall something from our Pre-Calculus class and that is
the Pythagorean Identity. We recall that sin2 x+ cosx = 1.

So actually, we’re just integrating:
∫

1 · dx which gives us our answer of: x+C.

Note that normally we would simply write
∫

1 · dx as just
∫

dx.

Example 1.16 Find
∫

sec3x tan3xdx �

You should recognize the form secx tanx. Recall that d
dx secx = secx tanx.

From this point, we want to use a similar approach to what we did on Example 1.9. The junk in
the sec and tan stays the same when we take the derivative, it’s just a matter of the coefficient on
the outside. So I know that integrating, I should end up with 3x as the angle no matter what.

I’m going to guess that my answer is sec3x+C. If we check that by taking the derivative, we
get 3sec3x tan3x which is off by a factor of 3.

That means we’ll want to divide by 3 to make it cancel out and we get our answer of: 1
3 sec3x+C.

AP The AP test will most likely focus on sinx and cosx, however, it’s important to be familiar
with all of the anti-derivatives for the trigonometric functions, because you never know
what will come up!

1.2.3 Practice Problems
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1.2 Integrating Transcendental Functions 17

1. Find
∫ (4

x + ex
)

dx.

2. Find
∫

e9x dx.

3. Find
∫

2e5x dx.

4. Find
∫ (

3x2+2x−1
x

)
dx.

5. Find
∫

1
3x dx.

6. Find
∫

e4+2x dx.

7. Find
∫ (

3x2 +4x−5
)

ex3+2x2−5x+4 dx.

8. Find
∫
(6x−21)ex2−7x+5 dx.

9. Find
∫

1
2 secx tanxdx.

10. Find
∫

3
cos2 (3x) dx.

11. Find
∫

2sinθ cosθ dθ .

12. Find
∫

cscθ (sinθ + cscθ) dθ .

13. Find
∫

x
2 − sinxdx.

14. Find
∫

sin4xdx.

15. Find
∫

csc2 (12x)dx.

16. Find
∫ ( sinx

cos2 x + x3
)

dx.

1.2.4 Practice Problems Solutions

1. 4 ln |x|+ ex +C

2. 1
9 e9x +C

3. 2
5 e5x +C

4. 3
2 x2 +2x− ln |x|+C

5. 1
3 ln |x|+C

6. 1
2 e4+2x +C

7. ex3+2x2−5x+4 +C

8. 3ex2−7x+5 +C

9. 1
2 secx+C

10. tan(3x)+C

11. −1
2 cos(2θ)+C

12. θ − cotθ +C

13. 1
4 x2 + cosx+C

14. −1
4 cos(4x)+C

15. − 1
12 cot(12x)+C

16. secx+ 1
4 x4 +C

1.2.5 Homework: Integrating Transcendental Functions

Problem 1.11 Find
∫ ( 3

2x + e2x
)

dx.

Problem 1.12 Find
∫ (

4x− ex+4
)

dx.

Problem 1.13 Find
∫

3e2x dx.

Problem 1.14 Find
∫ (

4x
1
2−2x

x
3
2

)
dx.

Problem 1.15 Find
∫ (

e4x+2ex

ex

)
dx.

Problem 1.16 Find
∫

9e3x dx.

Problem 1.17 Find
∫ (

4x3+2x2−1
x4

)
dx.

Problem 1.18 Find
∫

4sin(3x)dx.

Problem 1.19 Find
∫

sec2 (2x)dx.

Problem 1.20 Find
∫ ( x

3 − cscxcotx
)

dx.

Problem 1.21 Find
∫

secx(cosx+ secx) dx.
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18 Chapter 1. Techniques of Integration

Problem 1.22 Find
∫ (

4x+3x2 + cosx
)

dx.

Problem 1.23 Find
∫ ( 4

cos2 x +
2
x −

3
x2 + cosx

)
dx.

Problem 1.24 Find
∫

cosxdy.

1.3 u-Substitution
Sometimes, antiderivatives can be difficult, if not impossible, to find. All of the examples we did
involved straight-forward approaches. Today, we will look at examples that will require a little
finesse. It’s important to note two important things that are often confusing misconceptions for
students:

1. u-Substitution won’t work for all antiderivatives. Sometimes an antiderivative is too
complex and requires something more advanced.

2. You don’t always have to use u-substitution. Often, a problem requires only what we did
in the previous section, but a student far over-complicates it and attempts to implement
u-substitution unnecessarily.

3. u-substitution is one method of many. It is by no means a universal way to approach
integrals. You must develop the ability to determine when it should be used and when it is
not appropriate.

Objectives — u-Substitution.

• Identify the composed functions and decompose them.
• Use the method of u-substitution to find antiderivatives.

Recall the approach we took when we were looking at the Chain Rule. We considered the
functions as compositions and broke them apart. For example, d

dx sin4x3.

We see that we have an outside function of sinu and an inside function of (4x3). So, when we
take the derivative, we will have two steps. One for the outside function and one for the inside
function: d

dx sin(4x3) = cos(4x3) ·12x2.

In order to do differentiation by the Chain Rule, you had to become proficient at identifying
functions that were lodged inside of other functions.

To do u-Substitution, you will have the same task. You will need to identify the functions that
are inside of other functions. As a positive note, you had to sometimes identify many layers of
functions when you were doing the Chain Rule. With the u-Substitution problems presented in
this book, however, you will only ever be given two layers of functions.

Let’s begin by looking at some examples.

1.3.1 Basic Antiderivatives

Example 1.17 Find
∫

2(2x−5)10 dx �

We can see in this example, that taking the derivative the way we would normally do would
be very difficult. We would need to multiply (2x−5) by itself 10 times which is tedious and
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1.3 u-Substitution 19

unnecessary. This is a job for u−substitution.

Our general approach for these problems will be to find the inside part of the function and
replace it with a dummy variable that we will call u (the choice of the letter u is simply based on
convention – everyone uses u, so we will use it too).

Notice that we have one function composed of another function. Specifically, u10 is composed of
x−5. So, we will use the inside function, the x−5 as our u:

u = 2x−5.

Our goal will be to ultimately rewrite the entire integrand in terms of u, completely eliminating
all of the x values. Therefore, we need to find a way to get rid of the dx (since that’s the only
other x−value in there).

Here’s a trick mathematicians have figured out. If we take the derivative of that u, we would
have: du

dx = 2. Notice what happens if I multiply both sides by dx. I get:

du = 2dx.

Let’s go back to the integral we started with an see how all these us help us:
∫

2(2x−5)10 dx

We can rearrange this using the commutative property:
∫
(2x−5)10 ·2dx

Notice now that we can swap out all of the x−values: the 2x−5 will be replaced by u and the
2dx will be replaced by du. Rewriting that all, we have:

∫
u10 du.

We can now integrate much more easily than we could have before. We will just treat the u as
we would an x. We get:

1
11 u11 +C

That’s technically our answer, but to be proper we should write it using the original notation.
Since we defined u to be 2x−5, we will substitute that back in for our final answer:

1
11(2x−5)11 +C

Example 1.18 Find
∫
(3x+2)7 dx �

We can see here that the inside function would be 3x+2, so we can make that our u−value.

u = 3x+2

We have a problem, though, when we go to work with du
dx . We would have: du

dx = 3 which
would give us: du = 3dx. The 3 is an issue. If we try to replace that in the original equation,∫
(3x+2)7 dx, we wouldn’t be able to make a good replacement. The 3x+2 would be replaced

by u and the dx would be replaced by du, but what about the extra 3?

Let’s go back to the du = 3dx. If we decide both sides by 3, then we get:
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20 Chapter 1. Techniques of Integration

1
3 du = dx

We can actually replace the parts of our integrand now. Replacing everything, we would get:∫
u7 1

3 du. Admittedly, this looks awkward because the dx was replaced with the entire 1
3 du. We

can easily rearrange, though:

1
3

∫
u7 du

Integration of this gives us:

1
3 ·

1
8 u8 +C

We should finally replace the u with what we started with to be proper:

1
24(3x+2)8 +C

Example 1.19 Find
∫

2t
(t2+3)9 dt �

This may seem confusing because there is a lot going on. When we encounter a problem
like this, sometimes it helps to just try something and see if it works. If it doesn’t work, try
something different. Let’s just pick something:

u = (t2 +3)9

That gives us du
dx = 9(t2 +3) ·2t and so

du = 9(t2 +3) ·2t dx

Hopefully it’s obvious that this is completely not going to work. There is way too much stuff
there that is not in the original function that would have nowhere to go.

Let’s try again with a different u−value:

u = t2 +3

This would give us:

du = 2t dt

If we rearrange the original integral a little bit:
∫

2t dt
(t2+3)9 , we can clearly see that du will replace

the numerator and u will replace the part in the parentheses of the denominator. This is what we
want, so now we can see we have chosen the correct u.∫

du
u9 =

∫
u−9 du = −1

8 u−8 +C =−1
8 (t2 +3)−8 +C

Example 1.20 Find
∫
[(p−1)5 +(p−1)2− (p−1)]dp �

This may look confusing, but it actually has a very simple solution. Consider:

u = p−1,

which of course gives us
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du = 1 · dp.

Replacing everything, we would have:∫
(u5 +u2−u)du

This is now just a polynomial, and we can easily integrate:

1
6 u6 + 1

3 u3− 1
2 u2 +C,

and finally write our answer:

1
6(p−1)6 + 1

3(p−1)3− 1
2(p−1)2 +C.

1.3.2 Working with ex and lnx
Integrals involving u−substitution and ex or lnx may seem confusing, but with more practice,
it becomes apparent that it’s the same process over and over again. Let’s dive right in to some
examples.

Example 1.21 Find
∫

2e2x−5 dx �

It is possible to determine the answer to this without using u−substitution. However, it is
more likely that a person might think they could find the answer without using u−substitution,
but get the answer wrong. It is always better to use u−substitution when necessary than to guess
at the problem.

When working with an exponential function, the exponent will almost always be our u. Let’s try
setting this up and see how it works.

u = 2x−5

This sets us up with:

du = 2dx

If we rewrite the original integral, we can see:∫
e2x−5 2dx

The exponent can be replaced by u and the 2dx can be replaced with du. Replacing everything,
we have: ∫

eu du,

which easily integrates:

eu +C =e2x−5 +C

Example 1.22 Find
∫
(3x−1)e2x3−2x+5 dx �

This might look a little more complicated, but it’s really the same as the example we just did.
As mentioned earlier, setting the exponent equal to u is generally the way to go:
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22 Chapter 1. Techniques of Integration

u = 2x3−2x+5
du = (6x−2)dx

In this case, we can see that the du doesn’t quite match what we have in the integral. That’s no
problem, though – we can easily modify du to fit our needs:

1
2 du = (3x−1)dx

We can now rewrite our integral:∫
eu · 1

2 du = 1
2

∫
eu du =1

2 e2x3−2x+5 +C

Example 1.23 Find
∫

1
3 e3x+2 dx �

We can start by trying the same trick:

u = 3x+2
du = 3dx

There is a problem, though. du calls for 3dx, however, in our integral, we have 1
3 dx.

There are two things we can adjust to make this work. First, we can take the 1
3 out of the integral

completely and forget about it for the moment:

1
3

∫
e3x+2 dx

Second, we can modify our du to account for the 3:
1
3 du = dx

Now, we’re ready to plug the us back into the original expression.

1
3

∫
eu · 1

3 du = 1
3 ·

1
3

∫
eu du

We can now integrate for our final answer:
1
9 eu +C =1

9 e3x+2 +C

Example 1.24 Find
∫

ecosx dx �

We begin the same as in the past, with the exponent as our u.

u = cosx
du =−sinxdx

We find that we have a problem here: there is no sinx to use from the original expression and
there’s also no way to modify du using simple multiplication as we’ve done in other problems.

In this case, we conclude that u−substitution does not work and we’d have to use some other
integration strategy (which is beyond the level of this course).

AP On the AP test, all of the integration problems will either not need any special techniques,
will require the use of u−substitution, or will be performed directly on your calculator.
There is no need to worry about integrals that are more complex than this for now. However,
it is beneficial to be aware of the added complexity you will encounter in future Math
classes.
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Example 1.25 Find
∫

1
3x+1 dx �

Before we can begin this problem, it is important to note that
∫

1
x dx = lnx+C.

Just as with the exponential functions, there is a means of choosing u that nearly always works.
The convention is to choose the denominator to be the u.

u = 3x+1
du = 3dx
1
3 du = dx

We can now replace the x parts of the original integral:

1
3

∫
1
u du,

which finally allows us to integrate for our answer:

1
3 ln |u|+C =1

3 ln |3x+1|+C

Example 1.26 Find
∫

sin(x)
cos(x)+3 dx �

Even though this may look a little more difficult, we can still use the same convention – set
the u equal to the denominator:

u = cos(x)+3
du =−sin(x)dx
−du = sin(x)dx

We can rewrite the original integral slightly to get a better grasp of what we’re doing:∫
sin(x)dx
cos(x)+3

Now, replacing the x−values with u−values should be straight-forward:

−
∫

du
u =− ln |u|+C = − ln |cos(x)+3|+C

Perhaps my savvy readers will note that cos(x)+ 3 > 0,x ∈ R (since the range of cos(x) is
limited to −1 ≤ y ≤ 1) and so the use of the absolute value bars in this particular answer is
unnecessary.

Example 1.27 Find
∫

1
3x2 dx �

Once again, let’s begin by using the denominator as our u.

u = 3x2

du = 6xdx

This poses a problem, however, as we don’t have an extra x in the numerator and no way to get
one by simply multiplying numbers. When this situation arises, then we know that u−substitution
was not the right way to approach it. Indeed, we could rewrite our original integral:
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1
3

∫
x−2 dx,

and then integrate it using our normal "add and divide" approach:

−1
3 x−1 +C =− 1

3x +C

AP Sometimes, it’s hard to remember with the fractions when to use natural log and when
to just try integrating normally. If you are unsure, always try integrating normally. If
you "add and divide" and find yourself with a zero as your exponent and a zero in the
denominator, that’s the indicator that it should have an lnx.

1.3.3 Working with Trigonometric Functions
Working with trigonometric functions will be much the same as the other two functions. Once
again, we are looking for a function inside of a function. Let’s see some examples.

Example 1.28 Find
∫

sin(2x−4)dx �

We see that the interior function would be:

u = 2x−4

Using the same trick we did before, we get: du = 2dx. We would like to replace only the dx, so
we will need to divide both sides by 2 which gives us:

1
2 du = dx

We can now replace this in the original integrand just as we did before:

1
2

∫
sinudu

This leaves us with the integration process:

1
2 · (−cosu)+C =−1

2 cos(2x−4)+C

Example 1.29 Find
∫
(8x−8)sec2 (2x2−4x+5)dx �

We follow exactly the same process as before:

u = 2x2−4x+5
du = (4x−4)dx

2du = (8x−8)dx

We can now substitute and antidifferentiate:

2
∫

sec2 udu

= 2tanu+C = 2tan(2x2−4x+5)+C
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Example 1.30 Find
∫

sec4x tan4xdx �

u = 4x
du = 4dx
1
4 du = dx

1
4

∫
secu tanudu

It is easy to become confused by the extra bits in the integrand, but just remember, d
dx secx =

secx tanx.

1
4

∫
secu tanudu

= 1
4 secu+C = 1

4 sec4x+C

1.3.4 Monkey Wrenches
Of course, regardless of how well we master the types of problems shown in the examples above,
there will always be an odd question here and there. We can look at a few here.

Example 1.31 Find
∫ (

xsin(8x2−2)+ x3− 4
x2

)
dx �

Notice in this problem that only part of it will need u−substitution. The second two terms,
x3− 4

x2 can be integrated using the rules for polynomials. With this in mind, we should split the
integral into two parts – the part that requires u−substitution and the part that works by simply
"adding and dividing." ∫

xsin(8x2−2)dx+
∫ (

x3− 4
x2

)
dx

Since the right side is straight-forward, we can integrate that first:∫
xsin(8x2−2)dx+

∫
(x3−4x−2)dx

=
∫

xsin(8x2−2)dx+ 1
4 x4 +4x−1 +C

Now, we are prepared to integrate the first term. We will choose:

u = 8x2−2
du = 16xdx
1

16 du = xdx

When we substitute in, we should always keep everything – even the part we have already
integrated:

= 1
16

∫
sinudu+ 1

4 x4 +4x−1 +C

= 1
16 · (−cosu)+ 1

4 x4 +4x−1 +C
=− 1

16 cosu+ 1
4 x4 +4x−1 +C

=− 1
16 cos(8x2−2)+ 1

4 x4 +4x−1 +C

Example 1.32 Find
∫

sec2 x tanxdx �
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This is an interesting problem because it actually has more than one possible answer.

Option 1: Perhaps the most obvious way to approach this is to set u = tanx so that du = sec2 x.
Substituting in, we would have: ∫

udu = 1
2 u2 +C

So, once we get rid of the us again, we end up with an answer: 1
2 tan2 x+C

Option 2: We could have also set u = secx which means our du = secx tanxdx. Substituting in,
we actually have the same as we did in option 1:∫

udu = 1
2 u2 +C

However, substituting back in, we end up with the answer 1
2 sec2 x+C.

If you have trouble seeing this, consider that sec2 x tanx could be rewritten as secxsecx tanx.

Conclusion: Both of these answers are correct answers (find the derivative of each of them to
see that you will get the original expression). There will not be any ambiguous questions like
this on the AP test, however, the concept that integrals can function this way is important.

Example 1.33 Find
∫

sinx2 cosxdx �

Let’s begin by setting u = sinx2 which gives us du = 2xcosx2 dx. It should be obvious that
this will not work for what we have been given.

Let’s try again by using u = x2 and du = 2xdx. This will certainly not work either as we end up
without a cosine term.

What if we try u = cosx and du =−sinxdx? Again, we run into a dead end.

This is an important concept: not every problem can be solved by using u−substitution. To solve
this problem, you would need to use another technique like integration by parts which will not
be addressed here. However, the reader is encouraged to research the topic for familiarity.

Example 1.34 Find
∫
(3x2 +2x)dx �

If we try to establish a u, we will find the same issues that we found in the previous example.
This is because we would not need to use u−substitution for this particular problem. This is a
simple polynomial, we could easily obtain: x3 + x2 +C.

1.3.5 Practice Problems
Evaluate each of the following. If it cannot be performed using skills you have already learned,
write that.

1. 6
∫
(xcos(3x2 +2)dx

2.
∫

sec2(8x)dx

3.
∫

cos(lnx)dx

4.
∫
(ex sin(ex)+ e2x− e3x)dx

5.
∫
(6x−3)2 dx

6.
∫
(6x2−3)2 dx
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7.
∫ 2x

3x2−5 dx

8.
∫ 2x

(3x2−5)7 dx

9.
∫
{(x2 +5)5− (x2 +5)3 +(x2 +5)}2xdx

10.
∫ 2t

4t2−3 dt

11.
∫

4vev2−8 dv

12.
∫

sec(p+1) tan(p+1)dp

13.
∫ sec2 (3y−1)

tan(3y−1) dy

14.
∫
(2h3−1)sin(h4−2h)dh

15.
∫

sec2 (r)etan(r) dr

16.
∫ ( 2x

x2−4 +3x3−2
)

dx

1.3.6 Practice Problems Solutions

1. sin(3x2 +2)+C

2. 1
8 tan(8x)+C

3. Cannot be evaluated with what we know.

4. −cos(ex)+ 1
2 e2x− 1

3 e3x +C

5. 1
12((6x−3)3)+C

6. 36
5 x5−12x3 +9x+C

7. 1
3 ln |3x2−5|+C

8. − 1
18(3x2−5)−6 +C

9. 1
6(x

2+5)6− 1
4(x

2+5)4+ 1
2(x

2+5)2+C

10. 1
4 ln |4t2−3|+C

11. 2ev2−8 +C

12. sec(p+1)+C

13. 1
3 ln |3y−1|+C

14. −1
2 cos(h4−2h)+C

15. etanr +C

16. ln |x2−4|+ 3
4 x4−2x+C

1.3.7 Homework: u-Substitution

Problem 1.25 Find
∫ sin

√
x√

x dx.

Problem 1.26 Find
∫

sec2 (6x−5)dx.

Problem 1.27 Find
∫ sin(lnx)

x dx.

Problem 1.28 Find
∫

sin(lnx)dx.

Problem 1.29 Find
∫ ( 1

3x−4 +3x5−2x+5
)

dx.

Problem 1.30 Find
∫
(3x2−1)2 dx.

Problem 1.31 Find
∫
(6x+9)sin(x2 +3x)dx.

Problem 1.32 Find
∫
(3x2 +5)2 ·6xdx.

Problem 1.33 Find
∫
(3x2 +5)2 dx.

Problem 1.34 Find
∫

3cos(3x−1)e4sin(3x−1) dx.

Problem 1.35 Find
∫

2xex2−10 dx.

Problem 1.36 Find
∫
(4x−5)(2x2−5x)10 dx.

Problem 1.37 Find
∫

ex(ex−5)−3 dx.

Problem 1.38 There are two solutions for the following. Obtain them both:
∫

cosxsinxdx.
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1.4 Slope Fields

Objectives — Slope Fields.

• Correlate slope fields to integrals and the constant of integration.
• Plot slope fields given a differential equation.

1.4.1 What is a Slope Field?

We can begin by thinking of a slope field is a graphical representation of the possible antideriva-
tives of a function. Essentially, consider a function f (x) such that F(x) =

∫
f (x)dx. If we

graphed the F(x), we would have a slope field. It is called a slope field because recall that when
we find antiderivatives, we’re not sure what the constant of integration would be and so we don’t
know exactly where the graph will be. When we graph all of the possible answers, we end up
with a "field" of graphs.

But, with a slope field, there’s even a little more uncertainty. When we graph a slope field, not
only are we unsure about where the graph is placed, we’re not as certain about the graph itself.
Rather than try to find the antiderivative of these equations, we will simply settle for knowing
the slopes at various points for these equations. And instead of plotting a field of graphs, we will
plot a field of slopes. Thus, slope field.

Vocabulary — Slope Field.
A slope field is simply a field of slopes that reveal the solution of a differential equation. They
generally look like this:
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If we were to choose a C and follow along the slopes, we might end up with a function like this:

Considering all of the possible options like we have in the past, we would have something like:

Vocabulary — Differential Equation.
We will discuss differential equations in more detail in Section 1.6, but for now, we can establish
that a differential equation is an equation with differentials: dy or dx etc. which is of the form:
dy
dx = f (x,y). For example, dy

dx = 3x+2y is a differential equation.

Recall that dy
dx could also be written as y′ and so, dy

dx represents slope just as y′ does.
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1.4.2 Basic Differentials

Let’s begin by seeing some slope fields in action.

Example 1.35 Sketch the slope field for the differential equation dy
dx = 3x+2y. �

Our job will be to determine the slope at various points and then graph the slopes. Many
people find it easiest to make a table. In future problems, you will be told which points to use,
however, for this example, we will simply pick arbitrary points.

Point Scratch Work Slope
(0,0) dy

dx = 3(0)+2(0) 0
(0,1) dy

dx = 3(0)+2(1) 2
(1,0) dy

dx = 3(1)+2(0) 3
(1,1) dy

dx = 3(1)+2(1) 5
(2,0) dy

dx = 3(2)+2(0) 6
(2,1) dy

dx = 3(2)+2(1) 8
(1,2) dy

dx = 3(1)+2(2) 7
(0,2) dy

dx = 3(0)+2(2) 4
(2,2) dy

dx = 3(2)+2(2) 10

At (0,0), we found out the slope should be 0, so we would go to the origin on a graph and make
a short horizontal dash with that slope (flat). At (2,2), we have a slope of 10, so we would go to
the point (2.2) and draw a very steep line there. At (1,1) where the slope is only 5, we would
draw a slope about half as steep as the one we draw at (2,2), and so on. We will go through all
the points we chose in this example and draw small dashes with the right amount of steepness.
When we finish, we get this which is our answer.

Notice that the three parallel hash marks we mentioned earlier are lined up down the diagonal of
the graph. They actually provide some level of symmetry to the figure. These sorts of properties
are important to notice as we complete the task.

AP Many students worry about getting the right slope drawn for each dash and even take
extreme steps to ensure the dashes all have precisely the right amount of slope. However,
on the AP test, they will keep it simple and are only looking to see that you understand the
concept. A slope of 2 should be steeper than a slope of 1. Negative slopes should point
down, positive slopes should point up. And horizontal and vertical slopes should be clear.
Don’t over-complicate it. Get the slopes close enough and you should be fine.
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Example 1.36 Sketch the slope field for the differential equation dy
dx =

x
y on the graph given

below.
�

In this case, we are given the points we should use. Notice that there are nine of them. We
will set up a table with these nine points. The order we write them is not important.

Point Scratch Work Slope
(−3,−1) dy

dx =
−3
−1 3

(−3,−2) dy
dx =

−3
−2 1.5

(−3,−3) dy
dx =

−3
−3 1

(−2,−1) dy
dx =

−2
−1 2

(−2,−2) dy
dx =

−2
−2 1

(−2,−3) dy
dx =

−2
−3 0.67

(−1,−1) dy
dx =

−1
−1 1

(−1,−2) dy
dx =

−1
−2 0.5

(−1,−3) dy
dx =

−1
−3 0.33

Notice that we have several points here with a slope of 1. When we sketch this slope field,
those should all be parallel. The hash mark at (−3,−2) should be the steepest, the hash mark at
(−1,−3) should be the least steep. By sketching in each of these individual lines, we obtain:

AP A very common mistake students make on the AP test is to not graph at each of the points.
In most cases, you will be given a graph, as shown in the previous example, telling you
where to plot each point. Before you begin anything, count the number of points showing.
When you finish, count the number of hash marks you made and ensure you made the right
amount.
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1.4.3 Solving for dy
dx

In order to graph these plots, we must be able to calculated the slope at any point. In order to
do this, we must always have dy

dx isolated. If the problem does not begin that way, we must use
Algebra to ensure it happens.

Example 1.37 Sketch the slope field for the differential equation dy
2dx +

√
x = y on the graph

given below. �

This problem is different because dy
dx is not by itself. That’s easily addressed, though, we will

simply use Algebra to solve for it.

dy
2dx +

√
x = y

dy
2dx +

√
x−
√

x = y−
√

x
dy

2dx = y−
√

x

2· dy
2dx = 2·(y−

√
x)

dy
dx = 2(y−

√
x)

We can now easily solve for dy
dx and plot is as per usual. We must be careful, as the y is on the left

and x is on the right in the equation. This can be easily confuddled.

Point Scratch Work Slope

(0,0) 2
(
(0)−

√
(0)
)

0

(1,0) 2
(
(0)−

√
(1)
)

−2

(2,0) 2
(
(0)−

√
(2)
)
−2.83

(0,1) 2
(
(1)−

√
(0)
)

2

(1,1) 2
(
(1)−

√
(1)
)

0

(2,1) 2
(
(1)−

√
(2)
)
−0.83

(0,2) 2
(
(2)−

√
(0)
)

4

(1,2) 2
(
(2)−

√
(1)
)

2

(2,2) 2
(
(2)−

√
(2)
)

1.17

Sketching these as before, we have our answer:

∼Mackay∼



1.4 Slope Fields 33

1.4.4 Undefined Slopes
Thus far, we have only seen slopes that have been real numbers. How would we draw the slope
field if we find a slope where we are dividing by zero? We simply sketch a vertical line at that
point.

Example 1.38 Sketch the slope field for the differential equation dy
dx = 2y−3

x on the graph
given below. �

We begin as we usually do, by setting up a table with the points we need.

Point Scratch Work Slope
(0,0) 2(0)−3

(0) undefined

(1,0) 2(0)−3
(1) −3

(2,0) 2(0)−3
(2) −1.5

(0,1) 2(1)−3
(0) undefined

(1,1) 2(1)−3
(1) −1

(2,1) 2(1)−3
(2) −0.5

(0,2) 2(2)−3
(0) undefined

(1,2) 2(2)−3
(1) 1

(2,2) 2(2)−3
(2) 0.5

We see something a little strange here, we have three points that are undefined. Remember
that a vertical line has an undefined slope. So at those points, we will make the hash marks
vertical.
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1.4.5 Differential Equations with One Variable
Occasionally, we will encounter a differential equation that has only x or y, but not both. Problems
like these tend to confuse students because it seems as though information is missing. In fact,
nothing is missing and this problem will actually be computationally easier than the other
problems we have completed so far.

Example 1.39 Sketch the slope field for the differential equation dy
dx = y on the graph given

below. �

Our table will be computationally easier because we only have one variable to concern us.
Point Scratch Work Slope
(1,−1) (−1) −1
(1,−2) (−2) −2
(1,−3) (−3) −3
(2,−1) (−1) −1
(2,−2) (−2) −2
(2,−3) (−3) −3
(3,−1) (−1) −1
(3,−2) (−2) −2
(3,−3) (−3) −3

As we graph it, we actually see that the three columns will be identical. This is because the
slopes do not depend on what the x−value is.
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1.4.6 Finding Solutions

This is the last skill we will master in this section. We will not only sketch the slope field,
but we will decide which of all of the graphs is the correct solution and sketch that as well.

Example 1.40 Sketch the slope field for the differential equation dy
dx = 2y− x for the graph

given below, then sketch the solution that passes through the point (2,2). �

The beginning of this example will be the same as the ones that preceded it. However, we
are being asked to do one extra step. We are being asked to sketch a specific solution at (2,2).
We’ll begin with our table and plotting the slope field.
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Point Scratch Work Slope
(1,1) 2(1)− (1) 1
(1,2) 2(2)− (1) 3
(1,3) 2(3)− (1) 5
(1,4) 2(4)− (1) 7
(1,5) 2(5)− (1) 9
(2,1) 2(1)− (2) 0
(2,2) 2(2)− (2) 2
(2,3) 2(3)− (2) 4
(2,4) 2(4)− (2) 6
(2,5) 2(5)− (2) 8
(3,1) 2(1)− (3) −1
(3,2) 2(2)− (3) 1
(3,3) 2(3)− (3) 3
(3,4) 2(4)− (3) 5
(3,5) 2(5)− (3) 7

Graphing it, we see:

Now, to finish this problem, we need to sketch a solution through the point at (2,2). We will plot
that point on the graph and then sketch a curve that goes through the points as well as possible,
as if we were playing "Connect the Dots." This will not be an exact science because we are
hand-drawing it as opposed to performing it on a computer. However, our attempt to follow the
slopes should be apparent.
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Example 1.41 Sketch the slope field for the differential equation dy
dx =

1
x2 for the graph given

below, then sketch the solution that passes through the point (1,2). �

First, our table:

Point Scratch Work Slope
(0,0) 1

(0)2 undefined
(0,1) 1

(0)2 undefined
(0,2) 1

(0)2 undefined
(1,0) 1

(1)2 1
(1,1) 1

(1)2 1
(1,2) 1

(1)2 1
(2,0) 1

(2)2 0.25
(2,1) 1

(2)2 0.25
(2,2) 1

(2)2 0.25

As we graph it, we notice that the rows are each identical to each other. This make sense, since
the original differential equation, dy

dx =
1
x2 did not depend on the y−value.

The only thing remaining is to sketch the solution that runs through the point (1,2).
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1.4.7 Practice Problems
1. Sketch: dy

dx = x− y on the grid below.

2. Sketch: dy
dx =

y+1
x−2 on the grid below.

3. Sketch: dy
dx =

√
2x− x on the grid below.

4. Sketch: dy
dx = xy at (1,−1).

5. Sketch: dy
dx = x2− y at (−2,2).

6. Sketch the solution at (−2,2).

7. Sketch the solution at (7,11).

8. Sketch dy
dx if

(
dy
dx

)3
= x+2y.

9. Sketch dy
dx if dy

dx +2 = x2.
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10. Sketch dy
dx if dy

dx + x = 0

1.4.8 Practice Problems Solutions

1. dy
dx = x− y

2. dy
dx =

y+1
x−2

3. dy
dx =

√
2x− x

4. dy
dx = xy at (1,−1)

5. dy
dx = x2− y at (−2,2)

6. At (−2,2)

7. At (7,11)

8. dy
dx =

3
√

x+2y

9. dy
dx = x2−2

10. dy
dx =−x
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1.4.9 A Word About the Constant of Integration

We have discussed this concept a few times now, that when we integrate or solve a differential
equation, we have more than one possible solution because we don’t yet know what that constant
of integration could be. However, it is possible to choose one of the infinite answers as illustrated
in the red curve in both of the figures below.

When we have a slope field and we are given a point to sketch a solution through, we are
doing just that. We are choosing one of the infinite solutions that matches a particular scenario.

Remember, though, that each of the different solutions (those in green in the images above)
differ only by the constant of integration. When C is larger, the solution may move higher up,
etc. This means, then, that when we are given a point to investigate, we are in fact choosing a
specific C.

We will see in Section 1.5 how to solve a basic equation for the C. In Section 1.6, we will
also be solving for C, however we will solve much more complicated differential equations.

1.4.10 Homework: Slope Fields

Problem 1.39 Sketch dy
dx if dy

dx − x+ y2 = 0 on the grid below.

Problem 1.40 Sketch dy
dx = 3 on the grid below.

Problem 1.41 Sketch dy
dx = x2 + y and the solution that passes through (0,0) on the grid below.
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Problem 1.42 Sketch dy
dx if dy

dx +2x = 0 on the grid below. Then, sketch the solution at (−1,2).

Problem 1.43 Sketch dy
dx =

3
y2 on the grid below.

Problem 1.44 On the graph shown below, sketch the solution at (2,1).

1.5 Solving for C
Objectives — Solving for C.

• Use initial conditions and boundary conditions to solve for C, the constant of integra-
tion.

1.5.1 Boundary and Initial Conditions
In Section 1.4 we learned how to "solve" a differential equation graphically. We will now learn
how to solve it analytically. We will be given specific points just as we did before, but now we
will actually use them to solve for C as opposed to simply sketching the graph. This will be an
important skill for later when we see word problems.
Vocabulary — Initial Conditions.
Initial conditions describe the state of a system initially. For example, if the height of a particle
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is being studied with respect to time, and the study of this particle begins when the particle is at
a height of 100, then the initial condition would be that at t = 0, y = 100 where t represents time
and y represents the height of the particle. This is frequently written as y(0) = 100 or (0,100).
Initial conditions are generally dependent on time.

Vocabulary — Boundary Conditions.
Boundary Conditions are very similar to initial conditions, but refer to the state of a system at a
certain point. For example, if the height of a particle is being studied with respect to where it
is located along the x−axis (the position), and at the beginning of its journey, it already has a
height of−2, then the boundary condition would be at x = 0, y =−2 where t represents time and
x represents the position of the particle along the x−axis. This is frequently written as y(0) =−2
or (0,−2. Boundary conditions are generally dependent on position.

Boundary and initial conditions are important because they help us to solve for the constant of
integration, C.

There is an important lesson to be learned here: a particle’s height can be dependent on time or
on position, depending on the circumstances and what is being studied. It is even possible for
the particle’s height to be dependent on both time and position simultaneously which might be
addressed in more advanced Math classes.

It is also important to note that in general, the distinction between an initial condition and a
boundary condition is simply based on the distinction between time or position. In this section,
both will mathematically be handled identically.

The last important note to consider is that the initial conditions and boundary conditions do not
always have to be given with 0, however, they usually are.

Example 1.42 Find a solution for y when y =
∫
(3x+2)dx that passes through (0,2). �

The first part of this will be integrating just as we did in the first three sections of this book.∫
(3x+2)dx = 3

2 x2 +2x+C

Ordinarily, we would leave the C alone and call y = 3
2 x2 +2x+C our answer. However, at this

point, we have been given a boundary condition we can work with, (0,2). We will plug this in to
solve for C. note that this point tells us that when x = 0 then y = 2.

y = 3
2 x2 +2x+C

(2) = 3
2(0)

2 +2(0)+C 2 =C

By using this known point, we have solved for C and narrowed down all of the possible solutions
to one single answer which is: y = 3

2 x2 +2x+2.

1.5.2 Working with Differentials

Example 1.43 Find a solution for y when 2cosxdx = dy if y
(

π

2

)
= 4. �

This question is phrased a little differently that before. Specifically, we see that there is no
integral, and there is also no y. This is no problem, though, we can just integrate both sides and
then be back into familiar territory.
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2cosxdx = dy∫
2cosxdx =

∫
dy

2sinx+C1 = y+C2

Because we are doing two separate integrals, we need to have a constant of integration on each
side. Since these could be totally different numbers, we will use C1 and C2 to keep them distinct.
Let’s manipulate a little bit:

2sinx+C1−C2 = y

We now have an expression for y, all that remains is solving for the constants. For the moment,
we’ll ignore that there are two of them, and simply follow the same process we did in the last
example. Reading about the boundary condition, y

(
π

2 )
)
= 4, we conclude that when x = π

2 , then
y = 4.

2sin
(

π

2

)
+C1−C2 = (4)

2 · (1)+C1−C2 = 4
2+C1−C2−2 = 4−2

C1−C2 = 2

Notice that we didn’t actually solve for C1 and C2 separately. It doesn’t really matter what
they each are. All we’re concerned with is the ability to write an expression for y without any
constants and we have accomplished this: y = 2sinx+2

Example 1.44 Find a solution for y by solving the differential equation (2x− 5)2 dx
dy = 1

when y(2) = 3 �

Again, this looks a little different because there’s no y by itself. No problem, we can
rearrange. Treat the dx

dy just like any fraction.

(2x−5)2 dx
dy = 1

(2x−5)2 dx
dy ·dy = 1·dy

(2x−5)2 dx = dy

Now, we’re ready to integrate. We’ll have to use u−substitution on the left which is left to the
reader to check. ∫

(2x−5)2 dx =
∫

dy
1
2 ·

1
3(2x−5)3 +C1 = y+C2

1
2 ·

1
3(2x−5)3 +C1−C2 = y

1
6(2x−5)3 +C1−C2 = y

Using our boundary condition:

1
6(2(2)−5)3 +C1−C2 = 3

1
6(−1)3 +C1−C2 = 3
−1

6 +C1−C2 = 3
C1−C2 = 3+ 1

6
C1−C2 =

19
6

We are ready to write our answer: y = 1
6(2x−5)3 + 19

6 .
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Example 1.45 Find a solution for y by solving the differential equation sin(2x) = dy
dx with

the boundary condition (−π,0). �

As with all of the other problems, we’d like to have dy be by itself before we begin to
integrate. We will need to use u−substitution for the actual integration.

sin2x = dy
dx

sin2x·dx = dy
dx ·dx

sin2xdx = dy

∫
sin(2x)dx =

∫
dy

−1
2 cos(2x)+C1 = y+C2
−1

2 cos(2x)+C1−C2 = y

−1
2 cos(2(−π))+C1−C2 = (0)
−1

2 cos(−2π)+C1−C2 = y
−1

2(1)+C1−C2 = 0
C1−C2 =

1
2

We have arrived at our solution, y =−1
2 cos(2x)+ 1

2 .

1.5.3 Working with the Second Derivative

Example 1.46 Find an expression for y if d2y
dx2 = 2x−1, dy(0)

dx = 4 and y(0) = 2. �

Recall that d2y
dx2 means the second derivative of y. This means that in order to get to y, we’ll

need to integrate twice. This is why we have two boundary conditions, one for each integral step.
We note that we can separate d2y

dx2 to d
dx ·

dy
dx . (Consider that in the numerator, d2y, we can think of

only the d being squared. However, in the denominator, dx2, it is actually the entire dx that is
begin squared).

d2y
dx2 = 2x−1

d
dx ·

dy
dx = 2x−1

d
dx ·

dy
dx ·dx = (2x−1)·dx

d
dx ·dy = (2x−1)dx

∫ d
dx ·dy =

∫
(2x−1)dx

d
dx

∫
dy =

∫
(2x−1)dx

d
dx y+C1 = x2− x+C2
d
dx y = x2− x+C2−C1
dy
dx = x2− x+C2−C1

4 = 02−0+C2−C1
C2−C1 = 4

dy
dx = x2− x+4

dy
dx ·dx = (x2− x+4)·dx

dy = (x2− x+4)dx

∫
dy =

∫
(x2− x+4)dx
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y+C1 =
1
3 x3− 1

2 x2 +4x+C2
y = 1

3 x3− 1
2 x2 +4x+C2−C1

2 = 1
3(0)

3− 1
2(0)

2 +4(0)+C2−C1
C2−C1 = 2

We have finally arrived at our answer: y = 1
3 x3− 1

2 x2 +4x+2.

While correct, the notation for this example was tedious, even in the author’s opinion. In the
future, we’ll not worry so much about using perfect notation and focus instead on getting the
correct answer.

Example 1.47 Find an expression for y given that d2y
dx2 = cosx, dy(0)

dx = 5, and y(0) = 3. �

As promised, we will focus more on getting the answer and leave some of the notation out.
Note first that we can rewrite d2y

dx2 as simply y′′ and dy(0)
dx = 1 as y′(0) = 5. This has the potential

to simplify our scratch work considerably.

d2y
dx2 = cosx
y′′ = cosx

We will integrate both sides without necessarily writing out all of the integral symbols and
differentials.

y′′ = cosx
y′+C1 = sinx+C2
y′ = sinx+C2−C1

(5) = sin(π)+C2−C1
C2−C1 = 5
y′ = sinx+5

y =−cosx+5x+C2−C1
(3) =−cos(π)+5(π)+C2−C1

3 =−(−1)+5π +C2−C1
2−5π =C2−C1

We have arrived at our answer: y =−cosx+5x+2−5π . We can see that using y′ instead of
the notation with differentials made this problem slightly simpler.

1.5.4 Using an Initial Condition

Example 1.48 Let y′′ = et +1 and use the initial conditions y′(0) =−2 and y(2) = 4. Find
a solution for y(t). �

The only substantial difference in this problem is that we are now using t instead of x. In
this case, the conditions might more accurately be referred to as initial conditions instead of
boundary conditions. We will proceed exactly as we did in the last example.

y′′ = et +1
y′ = et + t +C2−C1

(−2) = e(0)+(0)+C2−C1
C2−C1 =−2
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y′ = et + t−2

y = et + 1
2 t2−2t +C2−C1

(4) = e(2)+ 1
2(2)

2−2(2)+C2−C1
6− e2 =C2−C1

So, our solution is y = et + 1
2 t2−2t +6− e2

1.5.5 Practice Problems

1. Solve for y given the initial condition (1,4) if y =
∫ 1

t dt.

2. Find a solution for y if dy = 1
x2 dx that passes through the point

(
4, 1

4

)
.

3. Solve the differential equation sec2 x dx
dy = 3 to find a solution for y with the boundary

condition y
(

π

4

)
= 5.

4. Let 2xsin(x2)dx = dy. If y(0) =−3, solve for y.

5. For the differential equation
√

x = dy
dx , solve for the solution in which y(0) = 9.

6. If 1
x2 =

d2y
dx2 , dy(1)

dx = 4, and y(1) = 2, find the solution for y.

7. Find the solution for y with initial condition y(5) =−6 if y =
∫

et dt.

8. Solve the differential equation y′′ = sinx with boundary conditions y′(0) = 4 and y(0) = 3.

9. Let
√

t +2 = dy
dt and let y = 5 when t =−2. Find the solution for y.

10. Solve the differential equation x3 dx
dy = 1 at y(2) =−1.

1.5.6 Practice Problems Solutions

1. y = ln |x|+4
2. y =−x−1 + 1

2
3. y = 1

3 (tanx+14)
4. y =−cos(x2)−2
5. y = 2

3 x
3
2 +9

6. y =− ln |x|+4x−2
7. y = et −6− e5

8. y =−sinx+5x+3
9. y = 2

3(x+2)
3
2 +5

10. y = 1
4 x4−5

1.5.7 A Word About the Constant of Integration

In section 1.4, we discussed the images below and we noted that our approach was to find a
given point on the graph and then sketch the curve that followed the slopes and passed through
that point. Doing this narrows down the possible solutions from infinitely many to one single
solution.
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In this section, we accomplished the same mission, however we did it analytically as opposed
to graphically. As soon as we choose a C, we have narrowed down the possible solutions from
infinitely many to one.

1.5.8 Homework: Solving for c
Problem 1.45 Find a solution for y that passes through (2,−1) by solving the differential
equation 2xex2

= dy
dx .

Problem 1.46 If 2ex = d2y
dx2 , find y when y′(0) = 4 and y(0) = 3.

Problem 1.47 Let 1 = csc2 x dx
dy and y

(
π

4

)
= 1, what is the solution for y?

Problem 1.48 Let y be given by y =
∫
(3x−4)dx. Find the solution that passes through the

point (2,5)

Problem 1.49 The second derivative of y is given by y′′ = 6t and the initial conditions are given
as y′(1) = 4 and y(1) =−2. Find the solution for y.

Problem 1.50 The slope of a function is described as y′ = 1
t +2t. What is the solution of this

function with the initial condition y(1) = 4?

Problem 1.51 Solve the differential equation dy
dx = 24(4x+ 2)2 with the boundary condition

y(0) = 12.

Problem 1.52 A function y has a boundary condition y
(1

4

)
=−2 and is described as y=

∫
e4x dx.

Solve for y.

1.6 Separation of Variables
When learning about slope fields in Section 1.4, we graphed some differential equations that
would be very difficult – maybe even impossible – to solve analytically. In Section 1.5, we solved
differential equations that were a little more straight-forward than the ones featured in Section
1.4 because they only ever had the independent variable (x) and the differentials

(
dy
dx

)
.

Now, we will begin to solve some more difficult problems where we will see dy
dx , x, and also y.

These quickly become very difficult; we will only be focusing on one technique – separation of
variables.
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Objectives — Separation of Variables.

• Use the Separation of Variables technique to set differential equations up for solving.
• Solve differential equations given an initial condition.

Vocabulary — Separation of Variables.
Separation of Variables is one of the most powerful and used techniques in solving differential
equations. The technique works with the assumption that a differential equation can be separated
into individual factors for each of the variables.

Vocabulary — Differential Equation.
A differential equation is a relationship between a function y and its derivative dy

dx . Considering
the example of a car in motion, it is an equation that represents the car’s position with its velocity
that could look like: dy

dt = ty where t represents the time, y represents the position, and dy
dt

represents the velocity.

Theorem 1.6.1 — Separation of Variables. The technique of Separation of variables re-
quires rearranging the non-differential side of an equation into factors for each of the variables
like this: dy

dt = Y (y)T (t). This can then be separated as: dy
Y (y) = dt ·T (t) which can usually be

easily solved.

Example 1.49 Let f be a function y = f (t) where dy
dt = 3yt and f (3) = 5. Find y = f (t) by

solving the differential equation dy
dt . �

As the name suggests, we always want to begin by separating the variables in the way
described in Theorem 1.6.1. To match up with what we saw above, Y (y) = y and T (t) = 3t in
this case. We can think of this algebraically and can accomplish this by simply multiplying both
sides by dt and dividing both sides by y.

dt·dy
dt = 3yt·dt

dy = 3yt dt

dy
y = 3yt dt

y
1
y dy = 3t dt

Our end goal is to get rid of the differentials, dy and dt. The best way to approach this is to
integrate. Integration is just like anything else in Algebra. Whatever you do to one side, you
must do to the other. Therefore, we’ll integrate both sides. Remember as we do this, these
are indefinite integrals, so we will need to use the constant of integration. Since we have two
different sides, we’ll have two different constants of integration (they could both be different
numbers). So, we’ll use C1 and C2 so we can keep them straight.∫

1
y dy =

∫
3t dt

ln |y|+C1 =
3
2 t2 +C2

We want to solve for y, eventually, so let’s begin by moving C1 over to the other side:

ln |y|= 3
2 t2 +C2−C1
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Consider, though, that C2−C1 will still just be some constant. There’s really no reason to
continue writing out both of them. We can instead just write:

ln |y|= 3
2 t2 +C

where C represents C2−C1.

Most people actually skip straight to this step, as it’s somewhat predictable. They simply write:∫
1
y dy =

∫
3t dt

ln |y|= 3
2 t2 +C

and simply forget about the C1 and C2 business.

Because they gave us an initial condition, that means we need to solve for C. We’ll use the same
techniques used in Section 1.5. We are told that f (3) = 5, so plugging this in and solving for C:

ln |5|= 3
2 32 +C

C = 27
2 − ln |5|

Because this is quite long, I will simply state that C = 27
2 − ln |5| and leave it written as C.

Now, to solve for y, we must get rid of the natural log. The inverse of natural log is exponentiating
both sides with Euler’s number. Doing that we have:

eln |y| = e
3
2 t2+C

y = e
3
2 t2+C

Notice that the absolute value symbols around y are no longer necessary. This is because it is not
possible for e

3
2 t2+C to be negative, so we don’t have to worry about y being negative.

Remembering our Algebra, we know that ea+b = eaeb and we use this to simplify further:

y = e
3
2 t2

eC

Recall from section 1.5 that even though eC is just going to be some other constant, we cannot
rewrite this as:

y =Ce
3
2 t2

because we have already solved for C.

Believe it or not, we have completed this problem, We can say that y = eCe
3
2 t2

where C = 27
2 − ln(5).

This problem certainly had a lot of steps and perhaps they were not all obvious. Fortunately,
there are a set of steps we can simply stick to when solving these types of problems, there is
really very little imagination involved here. With a little practice, these problems will eventually
become very quick.

AP You will most likely find this question on the free response section of the test. There are
generally five steps you can follow:

1. Separate the variables
2. Integrate both sides
3. Add C to one side
4. Solve for C
5. Solve for y
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1.6.1 Using the Five Steps

Example 1.50 Consider a function y where dy
dx = 3x

y and y(0) = 2. Solve the differential
equation to obtain an equation for y. �

We will simply follow the five steps we laid out in the AP Remark:

Step 1: Separate the variables

dx· dy
dx =

3x
y ·dx

dy = 3x
y dx

dy·y = 3x
y dx·y

ydy = 3xdx

Step 2: Integrate both sides ∫
ydy =

∫
3xdx

1
2 y2 = 3

2 x2

Step 3: Add C to one side

1
2 y2 = 3

2 x2+C

Step 4: Solve for C

1
2(2)

2 = 3
2(0)

2 +C
4
2 = 0+C

C = 2
1
2 y2 = 3

2 x2 +2

Step 5: Solve for y

1
2 y2 = 3

2 x2 +2
2·12 y2 = 2·

(3
2 x2 +2

)
y2 = 3x2 +4

y =±
√

3x2 +4

So we have our answer: y =±
√

3x2 +4

Example 1.51 If dy
dx = y · sinx and y(π) = 1, obtain y by solving the differential equation. �

Just as you will always do with these types of problems, you will follow the five steps:

Step 1: Separate the variables

dy
dx ·dx = y · sinx·dx

dy = y · sinxdx

dy
y = y·sinxdx

y
dy
y = sinxdx

Step 2: Integrate both sides
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dy
y =

∫
sinxdx

ln |y|=−cosx

Step 3: Add C to one side

ln |y|=−cosx+C

Step 4: Solve for C

ln |1|=−cosπ +C
0 =−(−1)+C

C =−1
ln |y|=−cosx−1

Step 5: Solve for y

ln |y|=−cosx−1
eln |y| = e−cosx−1

y = e−1e−cosx

So, our final answer is: y = e−1e−cosx

Example 1.52 Solve the differential equation dy
dx = y2√x if y(0) = 9. �

Always follow the five steps:

Step 1: Separate the variables
dy
dx = y2√x

dx· dy
dx = y2√x·dx

dy = y2√xdx

dy
y2 = y2√xdx

y2

y−2 dy = x
1
2 dx

Step 2: Integrate both sides ∫
y−2 dy =

∫
x

1
2 dx

−y−1 = 2
3 x

3
2

Step 3: Add C to one side

−y−1 = 2
3 x

3
2+C

Step 4: Solve for C

−(9)−1 = 2
3(0)

3
2 +C

C =−1
9

−y−1 = 2
3 x

3
2 − 1

9

Step 5: Solve for y

−y−1 = 2
3 x

3
2 − 1

9

y−1 =−2
3 x

3
2+1

9

(y−1)−1 =
(
−2

3 x
3
2 + 1

9

)−1

y = 1

− 2
3 x

3
2 + 1

9

So, our final answer is y = 1

− 2
3 x

3
2 + 1

9

.
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1.6.2 Determining when Separation of Variables Fails

Example 1.53 Solve the differential equation dy
dx = x+ y if y(3) = 2. �

Let’s follow our same steps:

Step 1: Separate the variables We seem to have a problem here. We are supposed to rewrite
the right side as X(x)Y (y), there is no way to rearrange the x and the y so that they are being
multiplied. Because separation of variables is the only technique we have learned so far to solve
differential equations, we do not have the mathematical tools to deal with this one. You will
learn how to do this in future Math classes.

Example 1.54 Solve the differential equation dx
dt = t + xt if x(0) =−2. �

At first glance, this appears to have the same problem as Example 1.53. However, let’s have
a closer look. What if we factor out a t on the right-hand side. We would have:

dx
dt = t(1+ x)

We actually now have what we needed. Thinking about X(x)T (t), we can see that T (t) = t and
X(x) = 1+ x. We are ready to proceed with our steps.

Step 1: Separate the variables

dx
dt = t(1+ x)

dt·dx
dt = t(1+ x)·dt

dx = t(1+ x)dt

dx
1+x =

t(1+x)dt
1+x

dx
1+x = t dt

Step 2: Integrate both sides (use u−substitution)∫
dx

1+x =
∫

t dt

ln |1+ x|= 1
2 t2

Step 3: Add C to one side

ln |1+ x|= 1
2 t2+C

Step 4: Solve for C

ln |1+(−2)|= 1
2(0)

2 +C
C = ln |−1|= ln(1) = 0

ln |1+ x|= 1
2 t2 +0

Step 5: Solve for x

ln |1+ x|= 1
2 t2 +0

eln |1+x| = e
1
2 t2

1+ x = e
1
2 t2

x = e
1
2 t2−1

We have finished: x = e
1
2 t2−1.
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AP How do you know which variable to solve for? Look at the differentials. If you have:
dJ
dr , solve for J. If you have: d(elephant)

d(banana) , solve for elephant. In short, always solve for the
variable on top. The variable on top is your dependent variable and the one on bottom is
your independent variable.

1.6.3 Differentials with One Variable

Example 1.55 Solve the differential equation dV
dp = k

√
V if V (2) = 3. �

We observe something odd with this problem, the independent variable, p, is nowhere to be
seen on the right-hand side. This is no typo. k is acting as a constant and there is no independent
variable. That is not required. We will proceed as we always have.

Step 1: Separate the variables

dV
dp = k

√
V

dp·dV
dp = k

√
V ·dp

dV = k
√

V dp

dV√
V
= k
√

V dp√
V

V−
1
2 dV = k dp

Step 2: Integrate both sides ∫
V−

1
2 dV =

∫
k dp

2V
1
2 = kp

Step 3: Add C to one side

2V
1
2 = kp+C

Step 4: Solve for C

2(3)
1
2 = k(2)+C

C =
√

3−2k
2V

1
2 = kp+

√
3−2k

Step 5: Solve for V

1
2 ·2V

1
2 = 1

2 ·
(
kp+

√
3−2k

)
V

1
2 = 1

2 ·
(
kp+

√
3−2k

)(
V

1
2

)
2 =

(1
2 ·
(
kp+

√
3−2k

))
2

V =
(1

2 ·
(
kp+

√
3−2k

))2

We finish with our answer V =
(1

2 ·
(
kp+

√
3−2k

))2
.

1.6.4 Practice Problems
1. Find V in terms of t by solving the differential equation: dV

dt = t
√

V if V
(√

2
)
= 0.

2. Solve the differential equation dy
dx =

x2

y2 when y(1) = 2.

3. Find a relation between y and x by solving the equation dy
dx = cos(x) if y

(
π

2

)
= 3.
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4. Solve the differential equation dy
dx − x = y when y(0) = 4.

5. Solve the differential equation dy
dx − x = 2 when y(0) = 4.

6. Solve the differential equation dV
dt =Vt2 when V (3) = 1.

7. Solve the differential equation dV
dt =V 2t when V (2) = 1.

8. Solve the differential equation dP
dr = P

r when P(1) = 2.

1.6.5 Practice Problems Solutions
1. V = (t2−2)2

2. y = 3
√

x3 +7
3. y = sin(x)+2
4. Cannot be solved with this technique.
5. y = 1

2 x2 +2x+C
6. V = e−9e

1
3 t3

7. V = 1
− 1

2 t2+3
8. P = 2r

1.6.6 Homework: Separation of Variables
Problem 1.53 Solve the differential equation dJ

dm = J when J(2) = 1.

Problem 1.54 Solve the differential equation dL
dt = L+6 when L(1) =−5.

Problem 1.55 Solve the differential equation dy
dx =

cosx
siny when y

(
π

2

)
= π .

Problem 1.56 Solve the differential equation dy
dx =

x
y when y(0) = 4.

Problem 1.57 Solve the differential equation dx
dy =

1
2 y√

x when x(2) = 0.

Problem 1.58 Solve the differential equation dy
dx −3y = 0 when y(8) = 1.

1.7 Definite Integrals and the FTC
Objectives — Definite Integrals and the FTC.

• Explain the difference between definite integrals and indefinite integrals.
• Use the Fundamental Theorem of Calculus to evaluate definite integrals.
• Redefine the bounds in a given definite integral when using u−substitution.

Vocabulary — Bounds.
Bounds are a new feature we will begin to see in our problems. Quite simply, they tell us from
where to where an integral should be done. What is it bounded by? We will see in the next unit
exactly what this means geometrically, but for now, you can consider them to be the starting and
stopping points of an integral. For an integral like:

∫ b
a f (x)dx, we say the bounds go from a to b.

They always start at the bottom and go up.

The bounds are the feature that now make the constant of integration unnecessary. See A Word
About the Constant of Integration on page 65 for a little more information.
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Vocabulary — Definite Integral.
"Antiderivative" is the technically correct term to use instead of "integral." In calculus, there are
two kinds of integrals – the indefinite integral (also called the antiderivative) and the definite
integral. We will learn about definite integrals later; in the next few lessons we will focus on
antiderivatives. Mathematically, they are closely related, however, the answer to an antiderivative
is always an equation, whereas the answer to a definite integral is always a number.

Most people don’t bother with (or aren’t aware of) the distinction and simply use the term
integral; however, it is important to note that there is actually a difference.

Property Definite Integral Indefinite Integral∫ 2

1
xdx = 3

2

∫
xdx = 1

2 x2 +C

Bounds on the integral symbol X
Evaluates to an expression (antiderivative) X
Evaluates to a number (integral) X
Requires a constant of integration X

Vocabulary — Fundamental Theorem of Calculus.
The Fundamental Theorem of Calculus (FTC) is what connects definite integrals to indefinite
integrals – it’s what connects antiderivatives to the actual integral.

Theorem 1.7.1 — The Fundamental Theorem of Calculus. Let f be a continuous function
on the closed interval [a,b], and let F represent the antiderivative of f . The FTC tells us that

∫ b

a
f (x)dx = F(b)−F(a).

In the next unit, you will learn how this works from a conceptual, geometric sense. But for now,
we will simply learn the process of evaluating definite integrals.

1.7.1 Fundamental Theorem of Calculus

Example 1.56 Find
∫ 2

1
xdx �

Let’s refer back to Theorem 1.7.1 which states,
∫ b

a f (x)dx = F(b)−F(a). It is important
to note that the lowercase f (x) represents the expression we are trying to integrate, while the
uppercase F(x) represents the antiderivative of f (x). Let’s see this in action:

The antiderivative of x will be 1
2 x2. We have seen this in previous sections and should be familiar

with it. Note that the +C is no longer necessary because we are evaluating a definite integral
instead of the indefinite integrals we are used to.

Going back to what we know from Theorem 1.7.1, we should plug the b−value in first (in this
case it is 2) and the a−value second (in this case, it is 1). We’ll then subtract these two things:

F(b)−F(a) = F(2)−F(1) = 1
2(2)

2− 1
2(1)

2 = 2− 1
2 = 3

2

∼Mackay∼



56 Chapter 1. Techniques of Integration

Example 1.57 Find
∫ 5

−1
(x2−2x+5)dx �

We will perform the same process, but we’ll introduce a new notation here. First, we compute
the antiderivative of (x2−2x+5)dx which happens to be 1

3 x3− x2 +5x. (Remember, we don’t
need the +C anymore, since this is now a definite integral.)

Because the substitution usually takes a couple of extra steps, we usually write out what we have
so far before proceeding. We write it like this:

(1
3 x3− x2 +5x

)∣∣5
−1

Notice that we have now written the antiderivative in the parentheses and the bounds are written
on the right in the same order they were written before.

This vertical bar is called, "such that." So, the expression we have written above would be said,
"
(1

3 x3− x2 +5x
)

such that x goes from −1 to 5." Notice that the bottom number is said first. It
goes from the bottom to the top.

We are ready to evaluate, we obtain:

∫ 5

−1
(x2−2x+5)dx

=

(
1
3

x3− x2 +5x
)∣∣∣∣5
−1

=

[
1
3
(5)3− (5)2 +5(5)

]
−
[

1
3
(−1)3− (−1)2 +5(−1)

]
=

[
125

3
−25+25

]
−
[
−1

3
−1−5

]
=

125
3
−
(
−1

3
−6
)

=
125

3
−
(
−1

3
− 18

3

)
=

125
3
−
(
−19

3

)
=

125
3

+
19
3

=
144
3

= 46

So, we see that
∫ 5
−1(x

2−2x+5)dx =46, a number just as we anticipated.

Example 1.58 Find
∫ π

2

0
sinxdx �

We will fearlessly approach this in the same way:
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∫ π

2

0
sinxdx

= (−cosx)|
π

2
0

=
[
−cos

(
π

2

)]
− [−cos(0)]

= (0)− (−1) = 1

We conclude that
∫ π

2
0 sinxdx =1.

Example 1.59 Find
∫

π

0
(x2−3x+ cosx)dx �

∫
π

0
(x2−3x+ cosx)dx

=

(
1
3

x3− 3
2

x2 + sinx
)∣∣∣∣π

0

=

[
1
3
(π)3− 3

2
(π)2 + sin(π)

]
−
[

1
3
(0)3− 3

2
(0)2 + sin(0)

]
=

(
π3

3
− 3π2

2
+0
)
− (0)

So,
∫

π

0 (x2−3x+ cosx)dx =π3

3 −
3π2

2 . There is nothing to motivate me to simplify this further.

1.7.2 Using the FTC with u-Substitution
We are now at a point where we can use all the skills recently learned – integration, u−substitution,
and the FTC. There is only one catch with which we must be careful.

Example 1.60 Find
∫ 4

−3
(3x+4)5 dx �

We should first notice that this problem will require that we use u−substitution:

u = 3x+4
du = 3dx
1
3 du = dx

This will give us: 1
3

∫ 4

−3
u5 du.

However, this is WRONG! This is a common mistake that countless Calculus students make
everyday.

Notice that using the terminology from Example 1.57, we would say, "as x goes from −3 to 4.
These bounds are specifically for the x−value. They do not apply to u. Since we have a new
variable, we will need new bounds. There are two ways we can handle this:
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Option 1 – Changing the bounds
We must ask ourselves: What will the u−value be when x =−3? And correspondingly, what
will the u−value be when x = 4?

We can plug these into the expression we obtained earlier for u and express this as: u(−3) =
3(−3)+4 =−5 and u(4) = 3(4)+4 = 16. Therefore, our integral would be correctly expressed
as:

1
3

∫ 16

−5
u5 du

The same process can now be followed to finish evaluating the integral.

1
3

∫ 16

−5
u5 du

=
1
3

(
1
6

u6
)∣∣∣∣16

−5

=
1
3

{[
1
6
(16)6

]
−
[

1
6
(−5)6

]}
=

1
18
(
166−56)

There is no reason to simplify further, we obtain our answer:
∫ 4
−3(3x+4)5 dx = 1

18

(
166−56

)
.

Option 2 – Using an indefinite integral
Alternatively, we can leave the bounds alone, treat it as an indefinite integral temporarily, then
plug back in once we have finished. This means we would have:

1
3

∫
u5 du

=
1
3

(
1
6

u6
)

Since u = 3x+4, we actually have: 1
3 ·

1
6 (3x+4)6. That means:

∫ 4

−3
(3x+4)5 dx

=
1
3
· 1

6
(3x+4)6

∣∣∣4
−3

=
1
18

{
[3(4)+4]6− [3(−3)+4]6

}
=

1
18
(
166− (−5)6)

=
1
18
(
166−56)

We see that we have obtained the same solution we obtained using Option 1. Therefore, either
option works fine.
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Theorem 1.7.2 — Definite Integrals and u−Substitution. When working with definite inte-
grals involving u−substitution, we must always remember to deal with the bounds.

Option 1: The bounds can be changed to reflect the variable being worked with. Then there
is no need to replace the u−terms with the original expressions.
Option 2: The integral can be temporarily performed as an indefinite integral. Once a solution
has been obtained, the original expressions can replace the u−terms, allowing the bounds to
remain unchanged.

Example 1.61 Find
∫ √

π

−
√

π

2

2xcos
(
x2
)

dx �

For the sake of further illustration, we will offer both options on this example.

Option 1 – Changing the bounds
We choose:

u = x2 du = 2xdx

We solve for the new bounds:

u
(
−
√

π

2

)
=

(
−
√

π

2

)2

=
π

2
u
(√

π
)
=
(√

π
)2

= π

We are now able to evaluate:∫
π

− π

2

cosudu

= sinu
∣∣π

π

2

= sin(π)− sin
(

π

2

)
= 0−1 =−1

Option 2 – Using an indefinite integral
Again, we choose:

u = x2 du = 2xdx

We now evaluate as an indefinite integral:∫
cosudu = sinu

Substituting back in for the u−term and bringing our bounds for x back, we now have:

= sin
(
x2)∣∣√π

−
√

π

2

=
[
sin
(√

π
)2
]
−

[
sin
(√

π

2

)2]
= [sin(π)]−

[
sin
(

π

2

)]
= 0−1 =−1

Regardless of which way we choose to approach this integral, we obtain the solution:
∫ √

π

−
√

π

2
2xcos

(
x2
)

dx=−1.
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Example 1.62 Find
∫ 10

−5

( 1
6x+4 − x3

)
dx �

This problem will require us to split up the integral. Notice that the first term will need
u−substitution, while the last two will not. Because of the issue with the bounds, it is imperative
to split these up. ∫ 10

−5

( 1
6x+4 − x3

)
dx =

∫ 10

−5

( 1
6x+4

)
dx−

∫ 10

−5
x3 dx

We will use only option 1 for this particular example, though either option is acceptable. Choose:

u = 6x+4 du = 6dx
1
6

du = dx

Giving us new bounds:

u(−5) = 6(−5)+4 =−26 u(10) = 6(10)+4 = 64

We remember to change the bounds of only the first integral as that is the only one that has
changed variables to u.

1
6

∫ 64

−26

1
u

du−
∫ 10

−5
x3 dx

=
1
6

ln |u|
∣∣64
−26−

1
4

x4∣∣10
−5

=
1
6
[ln |64|− ln |−26|]− 1

4
[
(10)4− (−5)4]

=
1
6
[ln(64)− ln(26)]− 1

4
(
104−54)

This gives us our final answer:
∫ 10

−5

( 1
6x+4 − x3

)
dx =1

6 [ln(64)− ln(26)]− 1
4

(
104−54

)
.

Example 1.63 Find
∫ π

2

0
sin(x)ecos(x) dx �

We will use option 1 here as it is usually faster, again, either option is acceptable.

u = cos(x) du = sin(x)dx

u(0) = cos(0) = 1 u
(

π

2

)
= cos

π

2
= 0

Notice that we will keep the bounds in the order they began. The bottom was bounded by 0, so
the bottom will continue to be bounded by the corresponding number, 1 and vice versa, even
though they are now out of order.

∫ 0

1
eu du

= (eu)
∣∣0
1

= e0− e1

= 1− e∫ π

2

0
sin(x)ecos(x) dx =1− e.
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AP The makers of the AP test will test you to see if you understand this concept of dealing
with the bounds. There is usually at least one question that will ask you to determine what
the new bounds will be after a given u-substitution is performed. Be sure that you are
equally comfortable with either option.

1.7.3 Switching the Bounds
Convention dictates that we list the bounds with the smaller number on bottom and the larger
number on top. However, mathematically, this doesn’t have to be the case and in the last example,
we even saw how this might work. We have two choices when the bounds are in the reverse
order: we can either leave them alone or we can flip them. Let’s look at an example of each.

Example 1.64 Find
∫ 0

3
x4 dx by leaving the bounds alone. �

We will simply solve this the way we normally would, ignoring the nagging feeling that the
bounds are amiss:∫ 0

3
x4 dx

=
1
5

x5
∣∣∣∣0
3

=
1
5
(0)5− 1

5
(3)5

=−35

5

Let’s keep this answer in mind for the next example:
∫ 0
3 x4 dx =−35

5 .

Example 1.65 Find
∫ 0

3
x4 dx by switching the bounds. �

Let’s just do what it says and see what happens. We will switch the bounds and obtain:∫ 3

0
x4 dx

=
1
5

x5
∣∣∣∣3
0

=
1
5
(3)5− 1

5
(0)5

=
35

5

The correct answer, as we saw in Example 1.64 was −35

5 , however, here we got 35

5 , which means
it is almost correct, it is off by a negative.

This will always be the case when we are switching bounds. If we switch the bounds, we should
also switch the sign of our answer.
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Theorem 1.7.3 — Switching the Bounds. The bounds of any integral can be switched by

negating the integral:
∫ b

a
f (x)dx =−

∫ a

b
f (x)dx

Example 1.66 Find
∫ − π

2

0
sin(x)dx by switching the bounds. �

We will do as we have said and switch the bounds, then make our answer negative.∫ − π

2

0
sin(x)dx

=−
∫ 0

− π

2

sin(x)dx

=−(−cos(x))
∣∣0
− π

2

= [cos(0)]−
[
cos
(
−π

2

)]
= 1−0

Our final answer is
∫ − π

2
0 sin(x)dx =1

Once again, we see that it would have been possible to use either of the two options presented:
leave the bounds alone and integrate as normal, or switch the bounds and negate the integral.
One might wonder why we would ever engage in the second option, as it is certainly not the
most direct way of evaluating the integral. We will see in Section 1.7.4 how this trick can be
incredibly useful.

1.7.4 Working with Abstract Problems

Sometimes, we are given problems that test our understanding of the material and not just our
ability to go through the steps. We refer to these as "abstract" problems because they feature
concepts, not actual expressions. We should look at an example to get a better idea of what this
means.

Example 1.67 If
∫ 3

1
f (x)dx = 5 and

∫ 5

1
f (x)dx = 3, what is

∫ 5

3
f (x)dx? �

This is actually a fairly straight-forward problem because we only have one function, f (x),
and no u−substitution. The problems will get more challenging as we go.

In this case, the integral of the function from 1 to 3 is 5, and from 1 to 5 is 3. Since we only want
from 3 to 5, we will subtract, 3−5 =−2.

So we see that
∫ 5

3 f (x)dx =−2.

Example 1.68 Let f (x) be a function such that
∫ 85

13
f (x)dx = 3. Find

∫ 10

1
f (8x+5)dx. �

Hopefully, it is apparent that this problem will require the use of u−substitution. We must
remember as we go, that since this is a definite integral and we are using u−substitution, we will
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need to change the bounds.

u = 8x+5 du = 8dx
1
8

du = dx

u(1) = 8(1)+5 = 13 u(10) = 8(10)+5 = 85

We see now that we have conveniently obtained the bounds from the given integral (that happened
on purpose). We can use that now. So, we have this:

∫ 10

1
f (8x+5)dx = 1

8

∫ 85

13
f (u)du

Since we know that
∫ 85

13 f (x)dx = 3, we can swap that out. The fact that we are using an x here
and what we’re swapping it out has a u doesn’t matter. As long as it’s f (something)dsomething,
then that is 3. The letter used is arbitrary.

∫ 10

1
f (8x+5)dx = 1

8

∫ 85

13
f (u)du = 1

8 ·3

And so we have our answer:
∫ 10

1 f (8x+5)dx =3
8 .

Example 1.69 Let f (x) be a function such that
∫ 3

−2
f (x)dx = 3.1 and

∫ 7

3
f (x)dx =−2. Find∫ 7

−2
(−1+3 f (x)) dx �

It is easiest if we split this integral up:

−1
∫ 7

−2
dx+3

∫ 7

−2
f (x)dx

This is now much easier to approach. Note that:

∫ 7

−2
f (x)dx =

∫ 3

−2
f (x)dx+

∫ 7

3
f (x)dx = 3.1+−2 = 1.1

Let us now continue with the actual computations:

−1
∫ 7

−2
dx+3

∫ 7

−2
f (x)dx

=−1x
∣∣7
−2 +3

∫ 7

−2
f (x)dx

=−(7)− (−(−2))+3(1.1) =−7−2+3.3 =−5.7

We can confidently say that
∫ 7

−2
(−1+3 f (x)) dx =−5.7.

Example 1.70 Assume that
∫ b

a
eu dx = 4 for some a,b ∈ R. What is

∫ b2

a2

e
√

x
√

x dx? �
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This will require us to use u−substitution. We can see that we should use:

u =
√

x du =
1
2

x−
1
2 dx 2du = x−

1
2 dx

u(a2) =
√

a2 = a u(b2) =
√

b2 = b

Substituting all of this in, we have:

2
∫ b

a
eu du

= 2(4) = 8

So, our final answer is:
∫ b2

a2

e
√

x
√

x dx =8.

Example 1.71 Consider a function f such that
∫ 1

−1
f (u)du = 3. Use this to evaluate∫

π

0
sinx · f (cosx)dx �

Let’s begin by using u−substitution. Remember, when we use u−substitution, we’re always
trying to pick out the argument of the function. In this case, it’s actually quite easy because the
argument is blatantly there:

u = cosx du =−sinxdx − du = sinxdx

u(π) = cos(π) =−1 u(0) = cos(0) = 1

We can now work on evaluating:∫
π

0
sinx · f (cosx)dx

=−
∫ −1

1
f (u)du

=

∫ 1

−1
f (u)du

= 3

So, this ended up actually being quite straight-forward, we conclude that
∫

π

0
sinx · f (cosx)dx =3.

1.7.5 Practice Problems

1. Find
∫ 7
−5 (3x2−2x)dx.

2. Find
∫

π

0 sec2 xdx.

3. Find
∫ 3
2 (x−4)(x2−8x)5 dx.

4. Find
∫ 4
−4 (2x+2)ex2+2x dx.

5. Find
∫ 5
3

1
x dx.

6. Find
∫ b
a

cos ln(x)
x dx.

7. Find
∫ 0
−3 e2x(e2x +1)3 dx.

8. Let
∫ 1
0 f (x)dx = 4,

∫ 10
1 f (x)dx =−3, and

∫ 11
10 f (x)dx = 2. Find

∫ 11
0 f (x)dx.
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9. If
∫ 5
1 f (x)dx =−1 and

∫ 15
1 f (x)dx = 3, what is

∫ 3
2 x · f (2x2−3)dx?

10. Consider a function f such that
∫ 3
1 f (x)dx = 6. Evaluate

∫ 2
1 [4x+ f (2x−1)] dx.

11. When
∫ b
a lnudu = 2, then

∫ √b√
a ln(x2) · xdx =

12. Find
∫ −5
2 3x2 dx by leaving the bounds alone.

13. Find
∫ −2
−1 (4x3 +2)dx by switching the bounds.

1.7.6 Practice Problems Solutions
1. 73−72 +53−52

2. 0

3. 1
12

(
156−126

)
4. e24− e8

5. ln5− ln3

6. sin(ln |b|)− sin(ln |a|)

7. 1
4

(
24−

(
e−6 +1

)4
)

8. 3

9. 1

10. 9

11. 1

12. −133

13. 13

1.7.7 A Word About the Constant of Integration
If we remember back to the Word About the Constant of Integration on page 11 and page 40,
we recall that the constant of integration was necessary when we didn’t know exactly where the
integral would be based on the antiderivative alone and needed a point to determine which curve
it was.

Because we now have bounds, the location of the function is not important. We are only
concerned with the shape of the function. This is why the +C is no longer necessary. This
argument will be laid out geometrically in the corresponding Word About the Constant of
Integration later on page ??.

1.7.8 Homework: Definite Integrals and the FTC

Problem 1.59 Find
∫ π

2
π

4
sinxdx.
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Problem 1.60 Find
∫ 1

0 (x3− x2)dx.

Problem 1.61 Find
∫ 3

1 x(x2 +2)dx.

Problem 1.62 Find
∫ 1
−2 (2x+3)(2x2−1)dx.

Problem 1.63 Find
∫ 1
−1

(
(3x+4)8 + x2

)
dx.

Problem 1.64 Find
∫ 10

7 f (x)dx if
∫ 10

1 f (x)dx = 3 and
∫ 7

1 f (x)dx =−1.

Problem 1.65 Find
∫

π

0 (sin(3x)+ x) dx.

Problem 1.66 Find
∫ 5

1 x2(x3 +9)dx.

Problem 1.67 Assume
∫ 4

2 sinudu = a, for some a ∈ R. Find
∫ 16

4
sin
√

x√
x dx in terms of a.

Problem 1.68 Find
∫ f

b (4x+ ex)dx.

Problem 1.69 Find
∫ 2

1 [2x−3 f (3x−1)] dx if
∫ 5

2 f (u)du = 10.

Problem 1.70 Find
∫ 1

3 xex2
dx.

Problem 1.71 Which of the following is equal to:
∫ 6

3 e5x+4 dx?

a 1
5
∫ 6

3 eu du

b 1
5
∫ 34

19 eu du

c
∫ 34

19 e5x+4 dx

d
∫ 3

6 e5x+4 dx

Problem 1.72 Which of the following is equal to:
∫ 2π

π
xsinx2 dx?

a
∫ 4π2

π2
1
2 sin(u)du

b
∫ 4π2

π2 2xsin(x2)du

c
∫ 2π

π
sin(u)du

d
∫ 4π2

π2 sin(u)du

1.8 Integral Applications
As you learn about how integration works, it’s important to understand what we use the operation
for. In this section, we’ll investigate some scenarios where an integral would be useful and learn
how to set up the integrals.

Objectives — Integral Applications.

• Integrate functions to determine the amount of something based on its rate.
• Determine when the initial condition is relevant to a given problem.

Let’s begin by recalling the direction of functions: f → f ′→ f ′′.

We can adapt this to a more conceptual understanding. The first derivative, f ′ can represent the
rate of change for something, while f would represent the actual quantity of that something. In
this section, we will not be working with the second derivative at all. So we now have something
like this:
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f
f ′

f ′′

↔
↔
↔

Amount
Rate
Not used today

For example:
f ′ (Rate) f (Amount)
The population growth rate of a penguin colony. The actual number of penguins at a given time.
The rate of cars passing through an intersection. The number of cars that passed through the in-

tersection.
The rate of people entering a zoo. The number of people who entered the zoo.
The rate of water leaking from a broken hose. The amount of water that has leaked from the

hose.

There are two types of questions they are likely to ask you on the AP test. The first is the
amount of something during a given interval. The second is the amount at a certain point. Let’s
take for example an example where L(t) represents the rate of water leaking from a faucet. They
might ask you how much water leaked only between 2PM and 3PM, or they might ask you how
much total water had leaked by 5PM. We will look at each case separately.

1.8.1 Working with Intervals
Let’s consider the example with leaking water mentioned above.

Example 1.72 Water is leaking from a broken faucet for 12 hours. The function L(t) =
sin(t3−3t2)+4t3 represents the rate at which the water in mL/hour is leaking in the interval
2≤ t ≤ 12. How much water leaks from the faucet between t = 2 and t = 3? �

Note that we will compare this question with Example 1.75 soon.

We are given the rate: L(t) and we wish to have the amount. Recall that means we are going from
the first derivative to the original function. We must integrate. We will use bounds for this integral.

Notice that there are two intervals given, 2≤ t ≤ 12 and 2≤ t ≤ 3. The first interval only tells
us where the given equation is allowed to work. We’re not so concerned with that. The second
interval is what they are asking us to investigate, so that is the interval we will use as the bounds
on our integral.

Our integral will be:
∫ 3

2 L(t)dt. Writing the L(t) instead of the entire function is acceptable since
L(t) has already been defined for us. However, we would certainly use the entire function when
evaluating.

Oftentimes, these problems ask us to get an approximation as opposed to the exact answer we
have highlighted above. This would be an exceptionally difficult integral to do by hand, so you
should use a calculator. By doing this, we obtain: 64.954 or 64.955 mL of water that leaked
from the faucet in that hour.

Example 1.73 The birth rate of porcupines per year in a Calculus Land is given by the
function B(t) = 500ln(4t3−2t)+ cos(3t) which is defined for the interval 2≤ t ≤ 10. How
many porcupines were born in this interval, rounded to the nearest porcupine? �

Here, they are telling us to use the given interval, (2,10), there is no need to dwell on it.
Therefore, we have:

∫ 10
2
(
500ln(4x3−2x)+ cos(3x)

)
dt ≈ 25,901.600. Rounded to the nearest
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whole number, we have 25,902 porcupines.

AP The AP test is not as concerned with the approximation you obtain, but more with the
approach you took. If you simply write the numerical answer and not the integral used,
you risk receiving no points. Therefore, from this point forward, we will highlight the
entire answer that you should offer on the free response questions.

Example 1.74 The rate of students per month applying to Defenestration University during
the first 6 months applications are accepted can be predicted from the function A(t) =
(0.3t−3)3 +30(0.3t−3)2− 1

0.3t−3 . How many students are expected to apply from t = 2 to
t = 6? �

Acceptable AP test free response answer:
∫ 6

2 A(t)dt ≈ 379 or 380 students.

1.8.2 Working with Initial Conditions
In all of the examples we looked at above, we only cared about what was happening in a specific
interval. It didn’t matter what was happening before that interval. Now, we will look at cases
where the initial condition is important to the problem. Let’s consider the example we started
with before, but with the question adjusted.

Example 1.75 Water is leaking from a broken faucet for 12 hours. The function L(t) =
sin(t3−3t2)+ 4t3 represents the rate at which the water in mL is leaking in the interval
2≤ t ≤ 12. By t = 2, 10 mL of water had already leaked from the faucet. How much water
has leaked from the faucet by t = 3? �

Notice how this question differs from that in Example 1.72. In that example, they ask us how
much water leaks only during that interval. In this example, they ask us how much water has
leaked by a certain time.

The set up in Example 1.72 did not require an initial condition. It simply didn’t matter how much
water had already looked. In this example, however, we must take that extra water that already
leaked into consideration, so this problem will require an initial condition.

Our answer will look like this: 10+
∫ 3

2 L(t)dt ≈ 74.954 or 75.955 mL.

Notice that this answer is 10 higher than the answer in Example 1.72. This makes sense as the
bounds are the same, the only difference was the added 10 in front.

Let’s discuss the structure of the expression we set up.

The basic idea is that we want to find how much water leaked in a certain period of time (in this
case from t = 2 to t = 3) and then add on the amount that we already knew about. Notice that
the bottom bound is a pair with the quantity being added, i.e. at t = 2 (the bottom bound) we
have an initial amount of 10 (the quantity being added). This will always be the case for these
types of problems, and can actually be quite formulaic. In fact, we can formalize this:

Theorem 1.8.1 — Incorporating Initial Conditions. When involving an initial condition in
an integral application, we can use the form:

initial amount+
∫ desired time

initial time f (t)dt
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Consider: The integral portion of the expression above represents the amount by which
something has changed during a specific period. If we want to know how much of something
there is, including what we started with, we would add the initial condition to the amount it
changed by.

Example 1.76 Ariel, a world famous lobster hunter, is able to catch lobsters at a rate given
by L(t) = 4t3−2t, where t is measured in hours and L(t) is measured in lobsters per hour
and the function is valid during the course of her work day which is 8 hours long. When she
arrives at her boat, she discovers there are already 47 lobsters in her traps. After 3 hours of
intense hunting, how many would she have caught, including the lobsters she started the day
with? �

Here again, we have an initial condition. We want to know how many total she has caught by
the end of 3 hours, so we have to consider how many she catches during those 3 hours (which
will be the integral part of our expression) and then add the number of lobsters she started with
(the initial condition of 47 lobsters).

Using the ideas from 1.8.1, we would have: initial lobsters+
∫ desired time

initial time L(t)dt.

We should now plug everything in and integrate. Because the function L(t) is fairly straight-
forward to integrate, we would expect to find this on the non-calculator section of the test and
would be expected to integrate it by hand.

47+
∫ 3

0

(
4t3−2t

)
dt

= 47+
(
t4− t2)∣∣3

0

= 47+
(
34−32)− (04−02)= 47+81−9 = 119

The answer on the free response part of the AP test could be written as: 47+
∫ 3

0
(
4t3−2t

)
dt = 119

lobsters.

Example 1.77 A software company develops code that can determine the decimals of an
irrational number at a rate of r(t) = 4t3− cos t as measured in decimals per second when
0 ≤ t ≤ 15. If the first 34 decimal digits of this number are already known, how many
decimals would be known after they run the program for 2 hours? �

We’ll be starting this expression with our initial condition of 34 decimal digits and then
adding the new hamburgers that come to us through the integral. We will have:

34+
∫ 2

0

(
4t3− cos t

)
dt

= 34+
(
t4− sin t

)∣∣2
0

= 34+
(
24− sin(2)

)
−
(
04− sin(0)

)
= 34+16− sin(2) = 50− sin(2)≈ 49.091

The final answer would look like this: 34+
∫ 2

0
(
4t3− cos t

)
dt ≈ 49 decimal digits.

1.8.3 Working with Multiple Functions
Though many scenarios require only one function, there are circumstances where a rate is broken
into multiple functions, some of which may also involve an initial condition. Let’s consider an
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example:

Example 1.78 Scientists studying a Snurgle population have established a birth rate gov-
erned by the function B(t) = 4t3 − ln(3t3) and a death rate governed by the function
D(t) = 3sin(t2)+ 1. Both of these functions are found to be valid from t = 0 to t = 12
where t represents the number of months since the Snurgle study first began. By how much
does the Snurgle population change in the first 6 months of the study?

N.B. I am a Mathematician, not a Biologist. Questions regarding the taxonomy or zoology of
a Snurgle will not be addressed in this book and are left as an exercise for the reader. �

The overall population rate of the Snurgles would of course require us to subtract the death
rate from the birth rate, that is, our population rate is B(t)−D(t). Since we are looking for the
amount during a specific interval, we’re not concerned with an initial condition. Therefore, we
will have the answer:

∫ 6
0 (B(t)−D(t))dt ≈ 1267.24.

Note that when this is input into the calculator, there should be parentheses around the function
D(t), otherwise there will be a sign error. It may alternatively be calculated:

∫ 6
0 B(t)dt −∫ 6

0 R(t)dt.

Example 1.79 Jesse has discovered that, for 0 ≤ t ≤ 365, the growth of his bank account
can be modeled by the function G(t) and his expenses can be modeled by the function E(t)
(where t is measured in days, and G(t) and E(t) are measured in dollars per day). If he has
$483.27 on Day 1, write an expression to represent how much money is in his bank account
by Day 87. �

In this example, we have an initial condition, the $483.27. The question is: do we need it?
The answer is yes. How can we know how much money is in his account at the end, if we don’t
know what he started with? The integral portion of our expression only represents the change of
money. We must know what we started with to know what that change contributed to.

We go back to our Theorem 1.8.1 and find that we should be writing: 483.27+
∫ 8

1 (G(t)−E(t)) dt.

Example 1.80 Alfonso and Sarah are both TAs (teaching assistants) for a professor at MIT.
They have many papers to grade and have decided to determine functions that describe the
rate at which they can grade during the time frame of one week. Alfonso grades at a rate of
A(t) and Sarah grades at a rate of S(t), both are measured in papers per hour. Two days into a
grading binge, they have graded 34 papers. How many papers will they grade together over
the next 5 days? �

This problem does give us an initial condition, but is it necessary? We are only being
asked how many papers they will grade from Day 2 to Day 5. We’re not being asked how
many total papers they will have graded by Day 5. So, we are only concerned with the integral,
we don’t need to worry about an initial conditions. The initial condition is extraneous information.

Another difference from the previous two examples to note is that we will be adding these two
functions instead of subtracting them. Alfonso and Sarah are both grading together and their
efforts are contributing to a total number of graded papers. Unless they’re doing it completely
wrong, neither of them should be subtracted.
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That gives us an answer of:
∫ 5

2 (A(t)+S(t)) dt.

AP On the AP test, they will not tell you if you need an initial condition, or if more than one
function should appear in your integral, you must determine these using your reasoning.

1.8.4 Practice Problems
1. Oil is pumped into a refinery at a rate of P(t) while the refined product is pumped out of

the refinery at a rate of R(t). Both of these functions are measured as gallons per hour and
are defined on the interval 4≤ t ≤ 12 where t represents the hours of a day. If there are
14,000 gallons in the refinery at t = 4, write, but do not evaluate an integral expression
which represents the number of gallons that are in the refinery at t = 12.

2. The growth rate of mold in a petri dish is given by G(t), while the death rate is given by
D(t) for the interval 10≤ t ≤ 14, where both G(t) and D(t) are measured in mL per hour
and t is given in hours. At t = 10 there are 2.8 mL of mold in the petri dish. Write, but
do not evaluate, an integral expression representing how much mold grows in the first 12
hours.

3. Ms. Mackay has been very busy and has not had a chance to touch her coffee. Unfortu-
nately, the Second Law of Thermodynamics has set in and the coffee has quickly begun to
cool. The coffee cools at a rate given by C(t) =−21.4 · (0.7)t for 0≤ t ≤ 12. If her coffee
is 100◦ at t = 0, how hot is it by t = 25? Round your answer to the nearest thousandth
place, use a calculator.

4. The rate of snow falling during a violent blizzard can be given by the function S(t) =
sin(t +5)+ 4cos t + 10 for the duration of the blizzard which lasts for 48 hours. Let t
represent hours and S(t) be measured by inches per hour. How much snow falls from t = 4
to t = 15? Round your answer to the nearest thousandth place, use a calculator.

5. Cheyenne is late to work and trying to get there as quickly as she can. She is trying to
maintain a velocity of v(t) = 3t3 for her 30 minute drive, but is having trouble because
the friction of the road and wind pushing against her are slowing her down at a rate of
s(t) = sec2 t. How much distance does she cover from time t = 0 to time t = π

4 ? Simplify
your answer to a whole number, no calculator.

6. The Infinite Hotel has a rate of new patrons of n(t) = 4
√

t + 8t and a rate of patrons
checking out of c(t) = 2t−5+4

√
t over the course of the 3 month peak period. If there

are 831 patrons in the hotel at t = 0 days, how many patrons would there be in the hotel at
t = 4 days? Simplify your answer to a whole number, no calculator.

7. The amount of sleep a high school student gets per day, can be modeled by three functions,
P(t), H(t), and V (t). P(t) represents parental pressure to go to bed at a reasonable hour,
thus adding to the amount of sleep a student gets per night. H(t) represents the loss of
sleep due to homework assignments. V (t) represents sleep time lost to video games. Write,
but do not evaluate, an integral expression representing the amount of sleep a student gets
over the course of one week.

1.8.5 Practice Problems Solutions
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1. 14,000+
∫ 12

4 (P(t)−R(t))dt

2.
∫ 12

0 B(t)dt

3. 100+
∫ 25

0 C(t)dt ≈ 40.009◦

4.
∫ 15

4 S(t)dt ≈ 114.309 inches

5.
∫ π

4
0

(
3t3− sec2 t

)
dt = π

4 −1

6. 831+
∫ 4

0 (n(t)− c(t)) dt = 899 patrons

7.
∫ 7

0 (P(t)−H(t)−V (t)) dt

1.8.6 Homework: Integral Applications

Problem 1.73 A rancher has recently invested in a granary and finds that they can measure
the rate at which grain is used by the function E(t) = 4+3

√
t where t is measured in days and

E(t) is measured in bushels per day, for 0≤ t ≤ 31. How many bushels would the rancher use
beginning at Day 4 until Day 9? Simplify your answer to an integer, no calculator.

Problem 1.74 A major fast food restaurant assembles hamburgers at a rate given by the function
h(t) = 100(6t−2t2) measured in hamburgers per hour during the lunch rush. Before the lunch
rush, the restaurant has 12 hamburgers prepared. How many hamburgers will they have assembled
by the end of the lunch rush, 3 hours later? Simplify your answer to an integer, no calculator.

Problem 1.75 The weight-gain of a baby gremlin during the first 3 weeks of life can be given by
the function g(t) = sin2 t− sin t +80, which is measured in pounds per day. Splorgy, a newborn
gremlin weighs 85 pounds when he is born. How much does his weight change in the first 5
days? Round your answer to the nearest thousandth place, use a calculator.

Problem 1.76 Painters, Daryl and Theresa, have been hired to paint a new house. During the
week that they have to paint the house, Daryl can paint at a rate of D(t) = 4t7−2t3 +8sec t, and
Theresa can paint at a rate of T (t) = 4cosh t, where each rate is measured in square feet per hour.
Write, but do not evaluate, an integral expression representing the number of square feet they
can paint in an 8 hour period.

Problem 1.77 A famed scientist is studying the population growth of a newly-discovered alien
microbial species on a newly-discovered planet. She is able to determine a function that appears
to model the birth rate for the week she spends observing, b(t) = sec(7t), in specimens/hour. Her
colleague stumbles upon the function that models the death rate, d(t) = 4

tan t in specimens/hour.
If there are 483 specimens of the alien when they are first discovered, how many mm of alien
population were there at the end of the first 24 hour period of observation? Write, but do not
evaluate, the integral that answers this question.

Problem 1.78 It has been shown that Americans are able to find new employment at a rate of
E(t), but lose their jobs at a rate of L(t) during a year long study, both measured in people per
month. Write, but do not evaluate, an integral expression representing the number of Americans
who find a job in the first six months of this particular study.

Problem 1.79 Despite aggressive campaigns to discourage smoking, new people begin smoking
on a daily basis. Fortunately, many medications have recently appeared on the market to help
smokers kick the habit. The government has funded a decade-long study to measure the rates at
which the smoking population changes. The study finds that the rate of new smokers is given
by the function n(t), measured in smokers per year, and the rate of smokers quitting is given by
the function q(t), also measured in smokers per year. If there are s0 smokers at the beginning
the study, write, but do not evaluate, an integral expression representing how many smokers are
there after 10 years.

Problem 1.80 Write a similar problem of your own. You do not need to write an actual equation,
you may simply name the function after your favorite letter. Be sure to be creative, and provide a
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solution. The last sentence of your problem should read: "Write, but do not evaluate an integral
expression..."

1.9 Straight-Line Motion: Integration
Objectives — Straight-Line Motion: Integration.

• Determine when the initial condition is relevant to particle motion.
• Distinguish between distance, displacement, and position.
• Find the distance, displacement, and position of a particle using the velocity.

Vocabulary — Displacement.
Displacement is a vector quantity meaning that it can be negative of positive which tells us
the direction. Displacement is the total distance you covered from your starting point to your
ending point, it doesn’t matter what path you took. So for example, everyday you go to school,
you may go out with your friends after, then stop at the store, and then go back home. Despite
all your detours, your displacement is 0 because you ended the same place you started. Your
displacement from home to school could be 1 mile, and your displacement from school to home
is −1 mile, because you’ve gone the opposite direction. Displacement is easy, we don’t have
to do anything special to the integral.

Vocabulary — Distance.
Distance is a scalar, meaning it is always positive and does not tell us direction the way displace-
ment does. While your total displacement every day is 0 (since you end up back at home), your
total distance is 2 miles (assuming it’s 1 mile in each direction). Because we’re not concerned
with negative or positive, we use an absolute value when we do distance.

Vocabulary — Position.
Position is just what it sounds like. We want to know where a particle is at some certain point. If
we want to know where a particle is after a while, we have to know where it started, aka
the initial condition.

All three of these fit on the first level of our diagram:
f
f ′

f ′′

↔
↔
↔

Distance, Displacement, or Position
Velocity
Acceleration

So, how do differentiate between distance, displacement, or position? It all depends on how you
set up the integral. We’ll see these set up in each of the following sections.

1.9.1 Finding Displacement

Displacement is the integral that we don’t need to do anything special to. It wakes up like that.
Just wakes up and rolls out the door. This matches what we were doing in the last section where
we were finding how much the amount of something changed over a period of time. So we have
our first theorem for this section.
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Theorem 1.9.1 — Displacement Integral. Displacement of a particle can be evaluated as:∫ b
a f (x)dx

It’s time to see some examples.

Example 1.81 A particle travels along the x−axis in a trajectory described by the function
v(t) = 3t +2 which is valid for 4≤ t ≤ 15. Find the displacement of the particle from t = 5
to t = 10. �

Because this is displacement, we can simply integrate and we will have our integral:∫ 10

5

(3t +2) dt

=

(
3
2

t2 +2t
)∣∣∣∣10

5

=

(
3
2
(10)2 +2(10)

)
−
(

3
2
(5)2 +2(5)

)
= (150+20)−

(
75
2
+10

)
= 160− 75

2
=

320
2
− 75

2
=

245
2

On the AP test, I would write my final answer as:
∫ 10

5 v(t)dt = 245
2

Example 1.82 A particle traveling along with a velocity given by v(t) = 2t sin t2 maintains
this velocity between t =

√
π

2 and t =
√

π . Find the total displacement of the particle during
this interval. �

Again, we will begin by setting up and evaluating an integral:
∫ √

π

√
π

2
2t sin t2 dt.

We will need to use u−substitution to evaluate this integral. If we choose u = t2 we would have:

u = t2 du = 2t dt u
(√

π

2

)
= π

2 u
(√

π
)
= π

∫ √
π

√
π

2

(
2t sin(t2)

)
dt

=
∫

π

π

2

(sinu) dt

= −cosu|ππ
2

= (−cosπ)−
(
−cos

π

2

)
=−(−1)− (−0) = 1

My final answer would be written as:
∫√π√

π

2
2t sin t2 dt = 1.
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Example 1.83 A particle moves according to the function v(t) = ln(5t3 +3t2− t) in the
interval t = 3 to t = 10. Find the displacement of the particle in this interval. �

Once again, we’ll need to set up an integral:
∫ 10
3 ln(5t3 +3t2− t)dt. We’ll need to use a

calculator to evaluate this, so we’ll get the answer:
∫ 10

3 ln(5t3 +3t2− t)dt ≈ 50.098.

1.9.2 Finding Distance
For distance, we said we needed to use absolute value because we only want to take positive
motion into consideration. In the next chapter, we’ll see how to actually approach these by hand.
Today, though, we will do these using a calculator. It should be noted that using the absolute
value adds quite a level of complexity to an integral, it is not a trivial change. So we have our
second theorem.

Theorem 1.9.2 — Distance Integral. Distance a particle travels can be evaluated as:∫ b
a | f (x)|dx

Let’s see some examples to see how these questions are different from the displacement questions.

Example 1.84 A particle travels according to the function v(t) = 4t +3−3t2 which is valid
in the interval t = 0 to t = 15. Set up, but do not evaluate an integral expression to represent
the distance the particle travels in the interval from t = 5 to t = 10. �

The keyword here is "distance," so we will need to use absolute value for this integral. Of
course, we already see an absolute value in the velocity function, but this will not affect our
approach. We will have the integral expression:

∫ 10
5

∣∣4t +3−3t2
∣∣ dt. If this looks confusing, we

could also write:
∫ 10

5 |v(t)| dt.

Example 1.85 The velocity of a particle traveling along the x−axis is governed by the
function v(t) = 3sin t−2 in the interval 0≤ t ≤ π . What is the distance the particle travels
during this interval? �

We will need to use a calculator for this question. We will first set up the integral and then
evaluate it. Be sure to ask your teacher how to do absolute value in the calculator if you don’t
already know:

∫
π

0 |3sin t−2|dt ≈ 2.498 or 2.499.

Example 1.86 A particle travels along the x−axis at the velocity given by v(t) = cos t+sin2 t
in the first quadrant. What is the distance the particle travels? �

In this case, the first quadrant is referring to t = 0 to t = π

2 , so we will integrate with those
bounds:

∫
π

0

∣∣cos t + sin2 t
∣∣ dt ≈ 1.785.

1.9.3 Finding Position
As we said earlier, if we want to know where something ends up, we need to know where it
starts. This is similar to the problems we did in the previous problem where we wanted to know
how much of something we ended up with – which means we had to know how much we started
with. We now have our final theorem for this section.

Theorem 1.9.3 — Position Integral. Position can be evaluated as:

f (t0)+
∫ t

t0 f (x)dx

∼Mackay∼



76 Chapter 1. Techniques of Integration

where t0 is the starting time, f (t0) is the starting position, and t is the time we are interested in.

Now, for some examples.

Example 1.87 A particle’s velocity is given by the function v(t) = 2t3−1 where t is mea-
sured in seconds and v(t) is measured in meters per second. At t = 0, the particle is at x = 4.
Where is the particle at t = 1? �

This is a tricky problem because you are used to x being the independent variable and y being
the dependent variable – we usually write our functions as f (x). When we are talking about
functions of particle position, however, the function is written as x(t). This means that t is the
independent variable and x is the dependent variable. Thinking of this another way, normally x
goes along the horizontal axis. On these problems t will instead be on the horizontal axis, and x
is on the vertical axis.

So, if we use our approach from Theorem 1.8.1, we get: initial position+
∫ desired time

initial time v(t)dt.
We’ll integrate this by-hand again:

4+
∫ 1

0

(
2t3−1

)
dt

= 4+
(

1
2

t4− t
)∣∣∣∣1

0

= 4+
(

1
2
·14−1

)
−
(

1
2
·04−0

)
= 4+

(
−1

2

)
− (0) = 4− 1

2
=

7
2
.

My answer would be written as: 4+
∫ 1

0 (2t3−1)dt = 7
2

Example 1.88 A particle traveling along the x−axis is located at x = 14 at t = 12. If the
velocity of the particle is given by v(t) = ln

(
t3
)

in the interval 0 ≤ t ≤ 30, where is the
particle at t = 30? �

Even though the interval for this function is from t = 0 to t = 30, we’re only going to look
at what the particle is doing from t = 12 to t = 30 since we already know where the particle is
at t = 12. (We don’t need to worry about what happens before t = 12, that is irrelevant. Since
u−substitution would not suffice in this problem, we will need to use the calculator to integrate.
We will get our answer of: 14+

∫ 30
12 ln

(
t3
)

dt ≈ 176.651.

Example 1.89 The acceleration of a particle is given by the function a(t) = 4t3−3t where
t is measured in seconds and a(t) is measured in m/sec2. If the particle has a velocity of
13m/sec at time t = 1, what is the velocity at time t = 2? �

This problem is a little different because they have given us the acceleration and asked for
the velocity. However, we are still only going through one level of integration (from a to v), so
this is actually the same as the other problems we have done.

We want to know what a velocity is at a certain point – in order to know that, we must know
what it was to begin with. Consider: If you know how much you sped up by, you still don’t know
how fast you are going unless you knew how fast you were going to begin with.
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We will use the form given in Theorem 1.8.1: initial velocity+
∫ desired time

initial time a(t)dt. Writing this
with the proper numbers input, we have: 13+

∫ 2
1 (4t3− 3t)dt. This could be the answer you

leave for the free response part of the test.

An integral like this would be very likely to appear on the non-calculator section of the test
because it is so straight-forward. Let’s integrate by-hand.

13+
∫ 2

1
(4t3−3t)dt

= 13+
(

t4− 3
2

t2
)∣∣∣∣2

1

= 13+
(

24− 3
2
·22
)
−
(

14− 3
2
·12
)

= 13+(16−6)−
(

1− 3
2

)
= 13+10−

(
−1

2

)
= 13+10+

1
2
= 23.5

For my final answer on the AP test, I would do most of that off to the side and then write my
final answer as: 13+

∫ 2
1 (4t3−3t)dt = 23.5.

AP Be very careful. All of these examples have involved integration because we’re going from
velocity to position (or acceleration to velocity). They make ask you to go from position to
velocity (or velocity to acceleration) in which case you would take the derivative.

1.9.4 Practice Problems
1. A particle travels along the x−axis with a velocity given by v(t) = 4t2−2t for all time

t ≥ 1. If the particle is at x = 3 at time t = 1, what is the position of the particle at t = 4?
Simplify your answer to an integer, no calculator.

2. A particle moves along the x−axis with a velocity given by v(t) = 8t2−4 for time t ≥ 0.
What is the acceleration of this particle at time t = 2? Simplify your answer to an integer,
no calculator.

3. A particle travels along a straight line and has a position x(t) at a given time t. If x(4) = 3
and the velocity of the particle is v(t) = 1

t2 , what is the position of the particle when t = 6?
Simplify your answer to an integer, no calculator.

4. A particle is moving along the x−axis. The velocity of the particle at time t is given by
the function v(t) = 3t + t3. What is the total distance traveled by the particle from time
t = 2 to time t = 10? Round your answer to the nearest integer, use a calculator.

5. A particle moves in straight line with a velocity given by v(t) = 4t +3t2 for t ≥ 0 what is
the displacement of this particle from t = 0 to t = 5? Round your answer to the nearest
integer, no calculator.

6. Write, but do not an integral expression for the distance a particle travels if its velocity
is given by the function v(t) = sin2t3 + 4t on the interval t = 3 to t = 15. Round your
answer to the nearest integer, no calculator.

7. A particle moves along a straight line with an acceleration given by a(t) = 4t + 2. At
t = 0, the velocity of the particle is v = 5. Write, but do not evaluate an integral expression
for the distance the particle travels from t = 0 to t = 10. Round to the nearest integer, no
calculator.
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8. The acceleration of a particle traveling along the x−axis is given by a(t) = sin
(
−3t + 5π

2

)
and at t = π

3 , the velocity is v = 2. What is the displacement of the particle over the interval
t = 0 to t = π? Round to the nearest integer, no calculator.

9. If a particle velocity is given by the function v(t) = 2
7t and x(1) =−3, where is the particle

at t = 4? Write your answer as an expression, no calculator.
10. A particle’s velocity can be determined by the function v(t) = 1

3t−1 . What is the displace-
ment of the particle between t = 2 and t = 6? Write your answer as an expression, no
calculator.

1.9.5 Practice Problems Solutions

1. 72
2. 32
3. 37

12
4. 2640
5. 175

6.
∫ 15

3

∣∣sin2t3 +4t
∣∣ dt

7.
∫ 10

0

∣∣2t2 +2t +5
∣∣ dt

8. −1
9 sin −π

2 +2π + 1
9 sin 5π

2 = 2
9 +2π

9. −3+ 2
7 ln(4)

10. 1
3 ln
( 5

17

)
1.9.6 Homework: Straight-Line Motion

Problem 1.81 If a particle travels at a velocity of v(t) = 2t +3 and is located at x = 4 at t = 2,
where is the particle at t = 5? Simplify your answer to an integer, no calculator.

Problem 1.82 A particle is traveling at a velocity given by v(t) = cos(π

4 t). What is the particle’s
displacement in the first 6 seconds of traveling? Simplify your answer to an expression in terms
of π , no calculator.

Problem 1.83 A particle travels along the x−axis at a velocity given by v(t) = 4t(3t−1). If
x(0) = 3, what is x(2)? Simplify your answer to an integer, no calculator.

Problem 1.84 A particle is at x = 2 at t = 10. Its velocity is given by v(t) = e4t−1. Write, but
do not evaluate, an integral expression representing the distance the particle travels from t = 10
to t = 20.

Problem 1.85 If a function travels at a velocity of v(t) = (3t2− 1)(t3− t + 12), what is the
displacement of the particle in the interval t = 2 to t = 5? Simplify your answer to an integer,
use a calculator.

Problem 1.86 Determine the distance a particle travels from t = 2.3 to t = 4 if the velocity
at any given point in that interval is v(t) = sin(t2−4t +1). Round your answer to the nearest
thousandth place, use a calculator.

Problem 1.87 The velocity of a particle is given by the function v(t) = sin(4t)+2t. What is
the displacement of the particle on the interval 0≤ t ≤ 4? Write your answer as an expression,
no calculator.

Problem 1.88 A particle travels along the x−axis at a velocity given by v(t) = sec(4t) tan(4t)
for the interval t = 2 to t = 2.5. If the particle is at x = 4 when t = 2, where is the particle at
t = 2.5? Write your answer as an expression, no calculator.

Problem 1.89 The acceleration of a particle traveling along a straight line is given by the
function a(t) = 4t2−3. If the velocity of the particle is 4 at t = 0, what is the displacement of
the particle on the interval 0≤ t ≤ 2? Simplify your answer to a rational number, no calculator.
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1.10 Average Value
Objectives — Average Value.

• Explain the difference between the average value and the value.
• Use integration to determine the average value of a function.
• Distinguish between distance, displacement, position, and average value.

Vocabulary — Average Value.
The average value of a function is exactly what it sounds like it should be. For example, the
average velocity of a function would be the average of all the different velocities throughout the
trajectory of the particle.

1.10.1 Given f and finding the average value of f ′

There is some confusion that students experience regarding why we would use integration to
compute the average value. The reasoning lies in how the question is phrased for us. Let’s see
some examples.

Example 1.90 A car starts at x = 50 miles and after 3 hours, it has traveled to x = 125 miles.
What is the average velocity of the car �

This example is fairly straightforward. In this time interval, it traveled a total of 75 miles.
Since it was a 3 hour time period, the average velocity was 25 miles per hour. We can see this in
a more formal context:

vavg =
125 miles−50 miles

3 hours

=
75 miles
3 hours

= 25 miles / hour

Note that in this example, we went from x(t)−→ v(t). This is an important detail.

Example 1.91 The position of a particle in the interval 0≤ t ≤ 10 is given by the function
x(t) = 4t2 +2t−1, where t is measured in seconds and x is measured in meters. What is the
average velocity of this function on this interval? �

Once again, we will be starting with x(t) and going towards v(t). Recall in example 1.90 we
had two x−values, specifically x = 50 (the starting displacement) and x = 125. We then divided
those by time. We should do the same here and obtain two x−values to start. Using our boundary
information:

x(0) = 4(0)2 +2(0)−1 =−1

x(10) = 4(10)2 +2(10)−1 = 419

We can now do this in the same formal sense that we did the last problem:

vavg =
419 meters−−1 meters

10 seconds

=
420 meters
10 seconds

= 42 meters / second
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So, we arrive out our final conclusion that the average velocity is 42 meters per second.

Example 1.92 The population of an alien ant farm at any given point in time could be given
by the function P(t) = sin tπ

2 where t is measured in years in the closed interval [0,500] and
P is measured in thousands of alien ants. What is the average rate of change of the population
for the interval [3,6]? �

Once again, we’re looking at a scenario where we’re given the function and then asked about
its derivative. So, we will follow the same procedure we did in the previous two problems. We
should begin by getting our function values:

P(3) = sin
(

3π

2

)
= 1

P(6) = sin
(

6π

2

)
= 0

Now, we can simply plug in as we did before:

vavg =
0−1
6−3

=
−1
3

We conclude with the answer that the average rate of change for t = 3 to t = 6 is −1
3 thousands

of aliens per year.

Notice that when we do these problems, we are simply using the slope formula. We might
formalize this and say that:

Theorem 1.10.1 When given f and finding the average value of f ′, we are simply finding the
slope of the secant line, therefore, we should use the slope formula:

m =
x(t2)− x(t1)

t2− t1

1.10.2 Given f ′ and finding the average value of f ′

In the previous section, we discussed the scenario when we would be given an f and then be
asked to find the average value of f ′. What happens if we are given f ′ and asked to find the
average value of f ′?

The underlying math is exactly the same – we will still be using the slope formula and finding the
slope of the secant line. However, in order to get the values for our numerator, we must integrate.

Example 1.93 Let the velocity of a particle be given by the function v(t) = 4t2 +2t−1 on
the interval [0,10] where t is measured in seconds and v is measured in meters per second.
What is the average velocity in this interval? �

So notice that we are not given x at all. We begin with v and we should end with v. However,
since we are still using the same approach as we did in the earlier problems, we will need to find
a y2− y1 for the numerator. i.e. we have:

vavg =
???

10−0
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In order to get the numerator, we will use integration. When you consider the way the FTC
works, you can see that:∫ 10

0
v(t)dt = x(10)− x(0)

Consider that when we perform that integral, we will find the antiderivatives (which are the
position functions) and then plug in the bounds (which gives us the y−values that we were using
in the previous examples. Therefore, we have:

vavg =

∫ 10
0 v(t)dt
10−0

=

∫ 10
0 (4t2 +2t−1)dt

10

This integral seems a little complicated. Most people would simply write these integrals like this
instead:

vavg =
1
10

∫ 10

0
(4t2 +2t−1)dt

We can now just integrate this as we normally would:

vavg =
1
10

∫ 10

0
(4t2 +2t−1)dt

=
1
10

(
4
3

t3 + t2− t
)∣∣∣∣10

1

=
1
10

[(
4
3
(10)3 +(10)2− (10)

)
−
(

4
3
(0)3 +(0)2− (0)

)]
As far as the free response part of the AP test is concerned, there’s no reason to simplify beyond
that. However, we can continue to simplify since we’re not taking the test right at this moment.

=
1
10

[(
4
3
(10)3 +(10)2− (10)

)
−
(

4
3
(0)3 +(0)2− (0)

)]
=

1
10

(
4 ·1000

3
+100−10

)
=

1
10

(
4000

3
+

300
3
− 30

3

)
=

1
10

(
4000+300−30

3

)
=

1
10

(
4270

3

)
This is our final answer in proper AP formatting and we should always remember to include
units: 1

10
∫ 10

0 v(t)dt = 427
3 meters per second

We now have a general form that we can use when we’re given f ′ and then asked to find the
average value of f ′:

Theorem 1.10.2 The average value of f ′ on the interval [a,b] can be calculated using the
formula:

f ′avg =
1

b−a

∫ b
a f ′(t)dt
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Example 1.94 Water leaks from a faucet at a rate of L(t) = sin(3t) mL per minute during
[0,60]. What is the average rate of water leaking in the interval [4,8]? �

Since we’re starting at the first derivative and the question is asking us about the first
derivative, we will plug directly into Theorem 1.10.2 and then solve. Note that we will be using
u−substitution to find the antiderivative.

Lavg =
1

8−4

∫ 8

4
L(t)dt

=
1
4

∫ 8

4
sin(3t)dt

=
1
4

(
−1

3
cos(3t)

)∣∣∣∣8
4

=
1
4

(
−1

3
cos(24)+

1
3

cos(12)
)

=
1
12

(−cos(24)+ cos(12))

Simplifying beyond this would be fruitless as cos(24) and cos(12) are both irrational. Therefore,
we have our final answer as we would write it on the AP test (including units!):
1
4
∫ 8

4 L(t)dt = 1
12 (−cos(24)+ cos(12)) mL per minute.

1.10.3 Monkey Wrenches

One of the most common problems students have is in dealing with integrals that have been split
up and/or are abstract. These problems are not so hard if we simply allow ourselves to become
comfortable with them.

Example 1.95 Consider a function f (t) such that
∫ 6

0 f (t)dt = 4 and
∫ 6

9 f (t)dt = 12. What
is the average value of f on the interval [0,9]? �

We are beginning with f and finding the average value of f . Therefore, we should use the
formula we saw in Theorem 1.10.2:

favg =
1
9

∫ 9

0
f (t)dt

Because of the structure of the information we were given, we should split this up into two
integrals:

favg =
1
9

(∫ 6

0
f (t)dt +

∫ 9

6
f (t)dt

)

At this point, we will simply plug in. We know that the first integral,
∫ 6

0 f (t)dt = 4. The second
integral will have to be flipped because the bounds were given to us in the wrong order. Therefore,
the sign of our answer will change:

∫ 9
6 f (t)dt = −12. We would now just plug these into the
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equation we developed earlier.

favg =
1
9

(∫ 6

0
f (t)dt +

∫ 9

6
f (t)dt

)
=

1
9
(4+−12)

=
1
9
(−8)

=−8
9

Since we were not given units, we would not worry about them. Our final answer could be
written as: 1

9
∫ 9

0 f (t)dt =−8
9

Example 1.96 Let f be the function defined by

f (x) =
{

sin(xπ), x < 0
2x, 0≤ x≤ 3

Find the average value of f on the interval [−1,3]. �

This will work the same way Example 1.95 did. We will need to break up the integral at
x = 0 since that’s where the piecewise-defined function is broken. Notice that we would use
u−substitution to find the antiderivative of the first part of the function.

favg =
1

3−−1

∫ 3

−1
f (x)dx

=
1
4

(∫ 0

−1
f (x)dx+

∫ 3

0
f (x)dx

)
=

1
4

(∫ 0

−1
sin(xπ)dx+

∫ 3

0
2xdx

)
=

1
4

(
− 1

π
cos(xπ)

∣∣∣∣0
−1

+ x2∣∣3
0

)

=
1
4

(
− 1

π
[cos(0 ·π)− cos(−1 ·π)]+

[
32−02])

We could stop here for the AP test. For the sake of this book, however, let’s continue.

=
1
4

(
− 1

π
[cos(0 ·π)− cos(−1 ·π)]+

[
32−02])

=
1
4

(
− 1

π
[cos(0)− cos(−π)]+9

)
=

1
4

(
− 1

π
[1+1]+9

)
=

1
4

(
− 1

π
·2+9

)
=

1
4

(
− 2

π
+

9π

π

)
=

1
4

(
9π−2

π

)
=

9π−2
4π
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We have finally arrived at our answer: 1
4
∫ 3
−1 f (x)dx = 9π−2

4π
.

1.10.4 Homework: Average Value

Problem 1.90 Find the average value of the function f (x) =
√

3x+2 on the closed interval
[1,4]. Do not use a calculator.

Problem 1.91 Let f be a function such that
∫ 10

5 f (x)dx = 3 and
∫ 0

5 f (x)dx =−2. What is the
average value of f on the closed interval [0,10]? Do not use a calculator.

Problem 1.92 A brave person has bungee jumped off of a bridge. For a given time 0≤ t ≤ 9.5,
their height as a function of time is given by the function f (t) = (t− 9.4)sin2 (t−9.4)+ 7.9.
What is their average height from t = 2 to t = 5? Use a calculator to evaluate.

Problem 1.93 A traveling car has a position given by the function x(t) = 8t−4 in the interval
0≤ t ≤ 10 where t is measured in hours and x is measured in miles. Find the average velocity of
the car from t = 2 to t = 5.

Problem 1.94 A population of aardvarks has invaded El Paso and scientists are stumped.
Scrambling to find answers, they have determined a set of functions that models their growth.
The aardvarks are being born at a rate of B(t) = 400e.02t where B(t) is measured in hundreds of
aardvarks and t is measured in weeks. They are dying at a rate of D(t) = 100e.01t where D(t) is
also measured in hundreds of aardvarks. Answer each of the following using the appropriate
units. Use a calculator to evaluate.

a) What is the average number of births in the interval t = 1 to t = 3?
b) What is the average number of deaths in the interval t = 1 to t = 3?
c) What is the average rate of change of the aardvark population in the interval t = 1 to t = 3?

Problem 1.95 Let x(t) = sin(3t2 +2t) be the position of a particle at a given time t. What is
the instantaneous velocity of the particle at t = 3? Use a calculator to evaluate.

Problem 1.96 A spacecraft travels at a velocity given by the function v(t) = t ·cos(t +3) where
0≤ t ≤ 50 is measured in seconds and v(t) is measured in meters per second. At time t = 0, the
spacecraft is at x = 400. Answer each of the following using appropriate units. Use a calculator
to evaluate.

a) What is the position of the spacecraft at time t = 50?
b) What is the distance traveled by the spacecraft in the first 50 seconds of its flight?
c) What is the displacement of the spacecraft in the first 50 seconds of its flight?
d) What is the average velocity of the spacecraft in the first 50 seconds of its flight?
e) What is the average acceleration of the spacecraft in the first 50 seconds of its flight?

Problem 1.97 Let f be the function defined by

f (x) =
{

2x2−3x+1, x < 5
4x3, 5≤ x≤ 10

What is the average value of f (x) in the closed interval [1,10]? Do not use a calculator.

Problem 1.98 Let v(t) = 2t2−4 represent the velocity of a particle in meters per second as a
function of seconds on the closed interval 0≤ t ≤ 4. Find the average velocity of this particle on
that interval. Use the appropriate units. Do not use a calculator.

Problem 1.99 Let x(t) = 2t2−4 represent the position of a particle in meters as a function of
seconds on the closed interval 0≤ t ≤ 4. Find the average velocity of this particle on that interval.
Use the appropriate units. Do not use a calculator.
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Problem 1.100 Consider a function f such that
∫ 6

1 f (x)dx = 12 and
∫ 6

3 f (x)dx =−3. What is
the average value of f in the closed interval 1≤ x≤ 3? Do not use a calculator.

Problem 1.101 Find the average value of the function f (x) = 3x2 + 3 on the closed interval
[−5,−1].

1.11 Homework Solutions

Problem 1.1: 4x+C Problem 1.2: x2 +C Problem 1.3: ex+C Problem 1.4: m3−m2 + 3
2 m4−4m+C

Problem 1.5: 1
5 x

5
2 + 6

5 x
10
3 +C Problem 1.6: xeπ+1

eπ+1 +C Problem 1.7: 16
3 y3 + 8y2 + 4y+C Problem 1.8:

6
5 x

5
3 + 3

2 x
8
3 +C Problem 1.9: −4 1

x −
1
x2 +

1
4x4 +C Problem 1.10: xy+C Problem 1.11: 3

2 ln |x|+ 1
2 e2x+C

Problem 1.12: 2x2− ex+4 +C Problem 1.13: 3
2 e2x +C Problem 1.14: 4ln |x|−4x

1
2 +C Problem 1.15:

1
3 e3x+2x+C Problem 1.16: 3e3x+C Problem 1.17: 4ln |x|− 2

x +
1

3x3 +C Problem 1.18: − 4
3 cos(3x)+C

Problem 1.19: 1
2 tan(2x)+C Problem 1.20: 1

6 x2 + cscx+C Problem 1.21: x+ tanx+C Problem 1.22:
2x2 + x3 + sinx+C Problem 1.23: 4tanx+ 2ln |x|+ 3

x + sinx+C Problem 1.24: ycosx+C Problem
1.25: −2cos

√
x+C Problem 1.26: 1

6 tan(6x−5)+C Problem 1.27: −cos(lnx) +C Problem 1.28:
We cannot solve this with the tools we have. Problem 1.29: 1

3 ln |3x−4|+ 1
2 x6− x2 + 5x+C Problem

1.30: 9
5 x5 − 2x3 + x +C Problem 1.31: −3cos(x2 +3x) +C Problem 1.32: 1

3 (3x2 + 5)3 +C Prob-
lem 1.33: 9

5 x5 + 10x3 + 25x+C Problem 1.34: 1
4 e4sin(3x−1) +C Problem 1.35: ex2−10 +C Problem

1.36: 1
11 (2x2− 5x)11 +C Problem 1.37: − 1

2 (e
x− 5)−2 +C Problem 1.38: 1

2 sin2 x+C or − 1
2 cos2 x+C

Problem 1.39: Problem 1.40: Problem 1.41: Prob-

lem 1.42: Problem 1.43: Problem 1.44: Problem
1.45: y = ex2 − 1− e4 Problem 1.46: y = 2ex + 2x+ 1 Problem 1.47: y = −cotx+ 2 Problem 1.48:
y = 3

2 x2− 4x+ 7 Problem 1.49: y = t3 + t − 4 Problem 1.50: y = ln |t|+ t2 + 3 Problem 1.51: y =

2(4x+ 2)3− 4 Problem 1.52: y = 1
4 e4x− 2− 1

4 e Problem 1.53: J = eme−2 Problem 1.54: L = et

e − 6

Problem 1.55: y = cos−1(−sin(x)) Problem 1.56: y =
√

x2 +16 Problem 1.57: x =
( 3

8 y2− 3
2
) 2

3 Prob-
lem 1.58: y = e−24e3x Problem 1.59:

√
2

2 Problem 1.60: − 1
12 Problem 1.61: 28 Problem 1.62: −3

Problem 1.63: 1
27 (7

9− 1)+ 2
3 Problem 1.64: 4 Problem 1.65: 2

3 + 1
2 π2 Problem 1.66: 56−19

6 + 375

Problem 1.67: 2a Problem 1.68: 2( f 2 − b2) + e f − eb Problem 1.69: −7 Problem 1.70: 1
2 (e− e9)

Problem 1.71: b Problem 1.72: a Problem 1.73: 58 bushels Problem 1.74: 912 hamburgers Prob-
lem 1.75: 401.920 pounds Problem 1.76:

∫ 8
0 (D(t)+T (t)) dt Problem 1.77: 483 +

∫ 24
0 (b(t)−d(t)) dt

Problem 1.78:
∫ 6

0 E(t)dt Problem 1.79: s0 +
∫ 10

0 (n(t)−q(t)) dt Problem 1.80: Answers will be graded

based on creativity and effort. Problem 1.81: 34 Problem 1.82: −4
π

Problem 1.83: 27 Prob-

lem 1.84:
∫ 20

10

∣∣e4t−1
∣∣ dt Problem 1.85: 8550 Problem 1.86: 1.051 Problem 1.87: 65

4 −
cos(16)

4

Problem 1.88: 4+ 1
4 (sec10− sec8) Problem 1.89: 22

3 Problem 1.90: 2
27

(
14
√

(14)−5
√

5
)

Problem

1.91: 1
2 Problem 1.92: 5.229 Problem 1.93: 8 mph Problem 1.94: a) 416 births per week, b) 102

deaths per week, c) the population is growing by 314 aardvarks per week during this time interval. Prob-
lem 1.95: −0.2655 Problem 1.96: a) 419.868 b) 788.911, c) 19.868, d) 0.397, e) −0.918 Problem 1.97:
1
9
[ 2

3 (5)
3− 3

2 (5)
2 +1− 2

3 +
3
2 −1+104−54] Problem 1.98: 20

3 meters per second Problem 1.99: 8 meters

per second Problem 1.100: 15
2 Problem 1.101: 34
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1.12 Enrichment: Using Partial Fractions

1.13 Enrichment: Integration by Parts

∼Mackay∼



1.14 Nerd Night Review 7 87

1.14 Nerd Night Review 7
Can you do these without mixing up integrals and derivatives? Have your teacher organize a
Nerd Night at school, or get some friends together and have your own Nerd Night at home.

Evaluate each of the following:

1. d
dx

(
4x2 sinx

)
=

2. d
dx

(
2x2−5

)
(3x+7) =

3.
∫

xsin(3x2)dx =

4. d
dx tan2x8 =

5.
∫

4
8x−15 dx =

6.
∫

e8x+15 dx =

7.
∫

sec2 x tanxdx =

8.
∫

4x(3x3 +2x)dx =

9. d
dx 4x(3x3 +2x) =

10. d
dx

5x−3
2x2+5 =

11. d
dx

5x8+3x
2 =

12.
∫

3
e2x dx =

13.
∫ 10

0
sin πθ

5 dθ =

14. d
dx sec(4x2−3x+1) =

15.
∫ 1

0
(8x−5)(4x2−5x+2)8 dx =

16.
∫ 3

1
1
x2 dx =

17. d
dx

1
x2 =

18.
∫ 4

−2
1

4x+3 dx =

19.
∫ 5

1
1

2x−15 dx =

20. d
dx(14x−2+5ln2x) =

Answers

1. 4x2 cosx+8xsinx

2. 18x2 +28x−15

3. − 1
6 cos3x2 +C

4. 16x7 sec2 2x8

5. 1
2 ln |8x−15|+C

6. 1
8

(
e8x+15

)
+C

7. 1
2 sec2 x+C or 1

2 tan2 x+C

(Both are possible answers)

8. 12
5 x5 + 8

3 x3 +C

9. 16x
(
3x2 +1

)

10. −10x2−12x−25
(2x2+5)2

11. 1
2

(
40x7 +3

)
12. − 3

2 e−2x +C

13. 0

14. (8x−3)sec(4x2−3x+1) tan(4x2−3x+1)

15. − 511
9

16. 2
3

17. − 2
x3

18. Undefined. (Look at the graph.)

19. 1
2 ln
( 5

13

)
20. 14+ 5

x
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